Developer Insights

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

R Algorithms in AI and computing forces working together: A small industry insight

When it comes to understanding computing processes, especially in today's front end and backend development world, most of the times everything revolves heavily around analyzing the algorithmic architecture in tools, applications, or more complex pieces of software.

In fact, a thorough analysis of what concerns the algorithmic side of things within the computing processing industry has led to a common conclusion— algorithmic functions are moving with architectural rendering languages to build much more complex tools.

Let's analyze some of these.

Algorithmic Retargeting in R and Python

The biggest Python application currently available for the mass market is the one related to front-end tools installed on enterprise sites.

This includes tools related to the web personalization industry, retargeting, remarketing, and Big Data manipulation, which are, in fact, a massive part of this statement.

The way these tools work is by restructuring a catalog onto specific user preferences.

This is done with the combination of Python features and R-rendering algorithms.

Python scripts are gathering big data from specific landing pages, which are then stored into a Javascript (generally) container.

After this is done, R algorithms are set up to render automatically the data, via (generally) AngularJS-coded scripts.

In this particular case, R functions are simply acting as a processing functionality.

Which Rendering Languages are Used

The above-mentioned process (gathering via Python, processed in R, and then exported in JS) is pretty common in a variety of architecture and, depending on the usage, the only variable for what concerns which programming languages are used is related to the "export" side of the matter.

To better explain this, let's analyze the most common programming languages— JavaScript and C#.

JavaScript exports are common within CMS-based tools (the ones, to reference, installed on architecture like WordPress, Magento, Shopify, etc) given the easiness of its application to these very portals.

C#, on the other hand, is used when the tool (or software) is native and, therefore, the rendering langue used to print the pieces of information must be tailored onto the building architecture.

Why is this Considered AI?

Although for many, the matter could sound a bit dark and complicated, the combination of R algorithms to rendering languages (and computing power in general) could be aggregated within the AI sphere.

This is possible because, technically, those features (data gathering, processing, and printing) are related to AI as a whole.

Artificial pieces of intelligence in 2019 have moved, in fact, to this very matter: fast processing, personalization, and projections tailored onto Big Data, automatically gathered without any human input.

Futuristic projections of AI controlling our lives still live in science fiction and sometimes, given how they're covered in many technology blogs/newspapers, these statements are extremely downgrading for an industry that is moving massively for what concerns both development and business awareness.

The Market Value

Pieces of software that are combining R algorithms and rendering languages as well as data automation have been covered by a variety of industry analysts.

These industry analysts have pointed out how they are building a futuristic architecture that is very likely to dominate the way we perceive data processing.

On top of everything that was said above, there is a significant part of the mobile market which is approaching the matter.

As we know, mobile has definitely become quite important, both from a development point of view (with new applications) and a purely business-related one (with many investors and new startups becoming enterprises).

Any app developers who have pointed out how algorithmic features within complex builds (especially on iOS) are now being embraced in the UK, which was recently selected as the European technological powerhouse.

We can safely say that this will become the industry standard in the near future. Take a free tutorial to Python & Machine learning programming for better understanding.

Should I learn React.js or Vue.js?

React.js and Vue.js are two of the most popular JavaScript frameworks. The duo are on the list of 10 best JavaScript frameworks to use in 2019, which says a lot about them. As such, both frameworks are great options to learn while aiming for learning or advancing in JavaScript.

Nonetheless, learning either of the two leading JS frameworks demands time and effort. Therefore, when required to make a choice, which one must gain preference over the other? Well, it’s not all black and white.

So, before we decide which should be prioritized over the other, React.js or Vue.js, let’s first have a brief introduction to both the JS frameworks.

React.js

Initially Released – May 2013

Used for – Front-end development

Though considered a leading JS framework, React.js isn’t essentially a framework. Instead, it is a front-end library created by Facebook for building user interfaces. Nonetheless, it is an excellent option for developing dynamic, full-scale applications.

One of the most outstanding features supported by React.js is the concept of virtual DOM. If you’re to give a React interview, expect queries related to virtual DOM coming your way along with other important React interview questions.

As the virtual DOM is capable of being rendered from both sides, i.e., the client-side and the server-side, React.js offers a high-performance rendering of complex user interfaces. Other than Facebook and Instagram, React.js is adopted by BBC, Netflix, and PayPal.

Vue.js

Initially Released – February 2014

Used for – Front-end development

Originally developed by Evan You, Vue.js is an open-source JavaScript framework that has an immense potential presently being exploited by web developers from across the globe. Adobe, Alibaba, EuroNews, Grammarly, and Xiaomi are some of the top brands benefitting from Vue.js.

Among all the JavaScript frameworks, Vue.js is the ideal option when it comes to simplicity. Moreover, it is one of the fastest-growing JS frameworks that allows updating model and views via two-way data binding.

In addition to AngularJS, KnockoutJS, and RivetsJS, the development of Vue.js has also drawn inspiration from React.js. Hence, there are several similarities between React.js and Vue.js, including the server-side rendering and using a virtual DOM.

React.js or Vue.js: Which one to pick for learning?

So now that we’re acquainted with React.js and Vue.js frameworks, it’s time to decide which one to learn first. Frankly, it’s up to the learner to determine which one to choose. To aid the process, we’ll discuss various important differences between the two JS frameworks below:

1.Community and resources

Of course, being supported by the world’s two leading social media platforms, Facebook and Instagram, isn’t something trivial. Throughout its tenure of over 5 years, React.js has accrued a grand community, which is expanding incessantly.

Thanks to the strong community backing, React.js developers receive instant help from veterans from around the world. Moreover, there are plenty of libraries and resources available for the leading JavaScript framework.

Although Vue.js was released only a couple of months after React.js, it was initially popular in China. It took some time for the JS framework to make its way to the western world. Hence, it has a relatively smaller, yet active, community.

Because Vue.js has a smaller community, fewer libraries are available to extend the functionality of the JS framework. It will take some more time for the Vue.js to flaunt a massive resource base like that supported by React.js or Angular. There are already a good number of Vue.js tutorial available online.

2.Data binding

Vue.js automatically synchronizes the complete model with the DOM and the data flows in both the directions. Hence, it supports two-way data binding.

React.js, on the contrary, offers one-way data binding. In this approach, the view reacts to any change made to the model, but the view can’t affect the model. As a consequence of one-way data binding, data flows in only one direction.

3. Documentation

The volume of documentation available for React.js is enormous! Moreover, as many individuals contribute to it, it can be hard to find what you are looking for.
Documentation guides and API references pertaining to Vue.js are simpler and easier to navigate, so getting started is a cinch if you have some experience with JS and HTML.

4. Further development

React.js is one of the most rapidly developing JavaScript frameworks. Maintenance and further development of the popular JS framework rest in the hands of Facebook and a team of volunteers.

Vue.js is an open-source framework that is expanding continuously. Its maintenance and development are controlled by its original developer Evan You and the community.

5. Learnability

Another important difference between React.js and Vue.js is the learning curve. React.js is an elaborate JS framework that requires a decent amount of time and effort to understand. There is a variety of semi-advanced to advanced concepts, helper libraries, and coding practices that can be intimidating for beginners.

Vue.js is a lightweight JS framework that stresses a minimalistic approach. In addition to being easy to implement, the JavaScript framework is relatively easy to comprehend.

6. Reliance on third-party technologies

As React.js is a JS library; the possibilities that a developer can have while working solely with it is limited. It is often mandatory to extend the functionality of React.js, for which developers need to rely on third-party modules and libraries.

Vue.js, on the other hand, is a complete JavaScript framework on its own. Hence, it offers a wide variety of opportunities. Furthermore, using third-party technologies can help further extend functionality. However, it isn’t necessary to use them.

7. Templates

Vue.js makes use of declarative templates. These are completely written in HTML. Hence, it makes them readable without any knowledge of other programming languages.
Unlike Vue.js, React.js doesn’t use any templates. Instead, it relies on something called a component model. Although many front-end JS frameworks now use the component model, it was React.js that introduced the idea.
The component logic in React.js is written in JavaScript. This allows for better flexibility, enabling rich data to pass through an application easily, and keeping the state out of the DOM.

These were some of the notable differences between React.js and Vue.js. Now, it should be easier for you to decide which one to pick if you had the choice to only learn one of the two leading JavaScript frameworks.
To further help you decide which one to pick over the other, the following section highlights the type of applications preferred to build using the two JS frameworks:

When to use React.js?

  • Dynamic applications – React.js is an ideal pick for building an application that requires re-rendering quickly. This is due to the JS framework’s ability to instantly reflect data changes in the view.
  • Native mobile applications – Reactive Native, a framework for building native apps using React, allows developing mobile applications that are almost identical to the ones built using Java or Objective-C.
  • SPAs – Because React.js is capable of displaying changes in the content without reloading the current page, it is best suited for building single-page applications.

When to use Vue.js?

  • Dynamic performant applications – Like React.js, Vue.js is a great option when developing dynamic applications. However, because it offers better performance than React.js, it is ideal for building dynamic applications that need to be highly performant.
  • SPAs – Vue.js allows changing the content quickly without reloading the page. Hence, it is ideal for developing Single Page Applications (SPAs). Again, SPAs built using Vue.js perform slightly better than those built using React.js.

Which JavaScript framework should I learn first?

Vue.js is simpler to learn while learning React.js comparatively takes more time and effort. Hence, it’s all up to your comfort level. The two JS frameworks share several similarities, e.g. the virtual DOM, so learning one will assist in learning the other.

Different JavaScript frameworks are developed to meet a certain set of requirements. For a JS developer, it is desirable to have a working knowledge of several frameworks.

JavaScript has something coming up every now and then. Hence, it is advised to keep a close eye on the latest JavaScript news and happenings to stay relevant in the continually transforming IT industry.

Conclusion

React.js and Vue.js are two of the leading JavaScript frameworks. Learning either of them will boost your marketability as a JS developer. Learning both of them is an even better option, provided you get the time and effort for doing so.

Disregard of the order in which you learn the two JS frameworks, having adequacy in React.js and Vue.js will undoubtedly boost your reputation as a JavaScript developer.As a leading JS framework, React.js is often compared with other popular JS frameworks, most notably Angular. Here is a detailed comparison drawn between Angular and React.js that any JS developer must know about.

The Biggest Digital Transformation Must-Haves for 2019

Digital technologies development has been on a constant rise in the past several years. Technologies such as AR and VR were mere whispers at the beginning of the 21st century. Today, we see these and other technologies all around us thanks to increased computing power and visionary inventors.These bots are smart and are getting smarter by the day. Their data storage expands with each query they process which in time ensures more logical and useful responses. Implementing machine-learning algorithms into your business and website can elevate the way you communicate with the public.

Blockchain technology

Blockchain started as a way to track cryptocurrency trade on the deep web. The currency (namely Bitcoin) became so destabilized that it required a centralized ledger of information and trade to work effectively.

Since then, blockchain has been repurposed into a business-centric technology. It allows companies to easily manage data, books, transactions and any information too valuable to lose.

Recent data shows that 90% of banks across North America and Europe continue to experiment with blockchain implementation. The same logic can be applied to individual business’ finances and records, especially with the estimated 33% drop in operational costs due to blockchain.

Marie Fincher, head of Trust My Paper content department had this to say about blockchain: “I fully support and advocate for blockchain implementation in online businesses. The sheer volume of potential implementations blockchain allows is astonishing to me, even after so many years in the online writing industry.”

Companies that implement blockchain will have an easier time when it comes to the management of their precious data, not to mention the client and project information involved in it.

Cloud-based outsourcing

Local servers, personal computer software and other forms of non-networked development are a thing of the past. Very few growth-focused businesses operate without relying on cloud-based computing and outsourcing services.It’s very easy and affordable to get storage space, computing power and even third-party support through cloud-based platforms. One notable example is the process of content creation for digital marketing. Data shows that 78% of global companies are happy with their outsourcing agencies, opting for third-party marketing instead of in-house expenditure.As with any other technology, marketing is a “make or break” feature which informs potential clients of your products and/or services. It can also be beneficial for businesses to invest into translation and localization of their digital content. With the recent shifts in the corporate marketplace, specialized outsourcing firms are a much better solution as opposed to internal teams which bleed revenue.

Recurring customer’s journey

The customer’s journey from introduction to brand advocacy is an important part of digital marketing. Today’s technology allows brands and companies to advertise their products and services in as many ways and platforms as they can muster.However, the customer’s journey is just as relevant as it ever was – if not more in 2018. The reason for this is the appearance of the recurring customer’s journey in which a customer is encouraged to reintroduce themselves to your brand. Only 37% of buyers have expressed that their brands know what they want as consumers. This means that one-sided marketing campaigns with little-to-no customer experience design will soon go extinct.You can achieve this by sending personalized email, small loyalty gifts and other purchase incentives. In doing so, you will effectively reignite the interest of old customers into your brand’s lineup.Studies have shown that 55% of customers are willing and ready to pay more for guaranteed quality of service. This number is only poised to grow with the ever-growing selection of brands and services as opposed to the customers’ limited budgets.They will effectively start the journey again and make a purchase, ending it with brand advocacy and word of mouth. Customer retention is a serious issue in the corporate sphere, so much so that innovations such as these are mandatory for the survival of a brand as a whole.

Marketing personalization

With so many link building agencies, SEO agencies, and digital marketing providers out there, people have grown tired of being treated as a “crowd”. Individualized messages and email marketing have become relevant again thanks to the surge in popularity of smartphones.

Short, direct messages aimed at specific customers can make a greater impact than a generalized banner ad placed somewhere on a website. Marketing personalization has veered its head in social media platforms and sites such as Google and YouTube as well.

Recent surveys have shown that 58% of marketing experts agree about the importance of original, personalized content. This means that you should pay close attention to the copywriting aspect of your marketing campaigns before you delegate that content.

Automated personalized marketing using email marketing software is more relevant than ever thanks to meticulously gathered data from web users around the globe. In 2018, this trend is poised to transform the way we perceive marketing and customer targeting – which is what makes this transformation even more relevant.

The future is bright (conclusion)

The above-mentioned points about digital transformation are but a taste of what the future has to offer beyond 2018. Estimates show that more than 50% of US ad spending will be directed at digital content by 2021. Companies and customers alike have a lot to look forward to when it comes to quality of life improvements of their digital content.

Pay attention to the trends and changes in your own industry to stay ahead of the curve. Don’t be afraid to implement new ideas and innovations into your workflow just because someone says you shouldn’t.

Companies which pioneer certain digital technologies are bound to get an increase in popularity and revenue as a result – don’t pass on the opportunity if it comes your way.

Applications of Artificial Intelligence in business [Infographic]

Businesses that use Artificial Intelligence (AI) and related technology to reveal new insights “will steal $1.2 trillion per annum from their less informed peers by 2020.” predicts Forrester Research. Although AI has been around since the 1950s, it is only recently that the technology has begun to find real-world applications (such as Apple’s Siri). The investment in AI by both tech giants as well as start-ups has increased 3 folds to $40 Billion as of 2017. Recent advances in AI have been helped by three factors:

  1. Access to big data generated from e-commerce, businesses, governments, science, wearables, and social media
  2. Improvement in machine learning (ML) algorithms—due to the availability of large amounts of data
  3. Greater computing power and the rise of cloud-based services—which helps run sophisticated machine learning algorithms.

Applications of AI

AI is important because it can help solve immensely difficult issues in various industries, such as entertainment, education, health, commerce, transport, and utilities. In fields like software testing, AI enables more efficient and accurate identification of bugs, enhances test automation processes, and contributes to the development of innovative solution, such as an AI companion app. AI applications can be grouped into five categories:

  • Reasoning: The ability to solve problems through logical deduction. e.g. financial asset management, legal assessment, financial application processing, autonomous weapons systems, games
  • Knowledge: The ability to present knowledge about the world. e.g. financial market trading, purchase prediction, fraud prevention, drug creation, medical diagnosis, media recommendation
  • Planning: The ability to set and achieve goals. e.g. inventory management, demand forecasting, predictive maintenance, physical and digital network optimization, navigation, scheduling, logistics
  • Communication: The ability to understand spoken and written language. e.g. real-time translation of spoken and written languages, Ai voice generation, real-time transcription, intelligent assistants, voice control
  • Perception: The ability to infer things about the world via sounds, images, and other sensory inputs. e.g. medical diagnosis, autonomous vehicles, surveillance
Here is an infographic by Mckinsey that shows the extent to which AI can be used end-to-end in the retail industry from identifying customers to personalizing promotion to inventory management. Applications of Artificial Intelligence (AI) in retail

Source: McKinsey

AI trends in various sectors

1. Healthcare

AI and ML technology has been particularly useful in the healthcare industry because it generates massive amounts of data to train with and enables algorithms to spot patterns faster than human analysts.

  • Medecision developed an algorithm that detects 8 variables in diabetes patients to determine if hospitalization is required.
  • An app called BiliScreen utilizes a smartphone camera, ML tools, and computer vision algorithms to detect increased levels of bilirubin in the sclera (white portion) of a person’s eye, which is used to screen people for pancreatic cancer. This cancer has no telltale symptoms, hence it has one of the worst prognoses of all cancers.
  • NuMedii, a biopharma company, has developed a platform called Artificial Intelligence for Drug Discovery (AIDD), which uses big data and AI to detect the link between diseases and drugs at the systems level.
  • GNS Healthcare uses ML algorithms to match patients with the most effective treatments for them.

2. Entertainment

A familiar application of AI in everyday life is seen with services like Netflix or Amazon, wherein ML algorithms analyze the user’s activity and compare it with that of other users to determine which shows or products to recommend. The algorithms are becoming intelligent with time—to the extent of understanding that a user may want to buy a product as a gift and not for himself/herself, or that different family members have different watching preferences.

3. Finance

  • Investment companies like Aidya and Nomura Securities use AI algorithms to conduct trading autonomously and robo-traders to conduct high-frequency trading for greater profits, respectively.
  • Fintech firms like Kensho and ForwardLane use AI-powered B2C robo-advisors to augment rebalancing decisions and portfolio management performed by human analysts. Wealthfront uses AI algorithms to track account activity and help financial advisors customize their advice.
  • Chatbots, powered by natural language processing, can serve banking customers quickly and efficiently by answering common queries and providing information promptly.
  • Fraud detection is an important application of AI in financial services. For example, Mastercard uses Decision Intelligence technology to analyze various data points to detect fraudulent transactions, improve real-time approval accuracy, and reduce false declines.

4. Data security

Cyber attacks are becoming a growing reality with the move to a digital world. There are also concerns about AI programs themselves turning against systems.

  • Automatic exploit generation (AEG) is a bot that can determine whether a software bug, which may cause security issues, is exploitable. If a vulnerability is found, the bot automatically secures it. AEG systems help develop automated signature generation algorithms that can predict the likelihood of cyberattacks.
  • PatternEx and MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed an AI platform called AI2 which claims to predict cyber attacks better than existing systems. The platform uses Active Contextual Modeling, a continuous feedback loop between a human analyst and the AI system, to provide an attack detection rate that is better than ML-only solutions by a factor of 10.
  • Deep Instinct, an institutional intelligence company, says that malware code varies between 2%-10% in every iteration and that its AI model is able to handle the variations and accurately predict which files are malware.

5. Manufacturing

  • Landing.ai claims to have created machine-vision tools to find microscopic defects in objects like circuit boards using an ML algorithm trained using tiny volumes of sample images. In the future, self-driving robots may be created which can move finished goods around without endangering anyone or anything around.
  • Robots in factories are often stationary but are still in danger of crashing into objects around it. A new concept called collaborative robots or “cobots, enabled by AI, can take instructions from humans, including instructions that the robot has not been previously exposed to, and work productively with them.
  • AI algorithms can influence the manufacturing supply chain by detecting the patterns of demand for products across geographies, socioeconomic segments, and time, and predicting market demand. This, in turn, will affect inventory, raw material sourcing, financing decisions, human staffing, energy consumption, and maintenance of equipment.
  • AI tools help in predicting malfunctions and breakdown of equipment and taking or recommending preemptive actions as well as tracking operating conditions and performance of factory tooling.

6. Automotive industry

  • Tesla introduced TeslaBot, an intelligent virtual assistant integrated with Tesla models S and X, allows users to interact with their car from their phone or desktop.
  • Uber AI Labs is working on developing self-driven cars with the help of the best engineers and scientists. Uber has already tested a batch of self-driving cars in 2016.
  • Nvidia has partnered with Volkswagen to develop “intelligent co-pilot systems” in cars that will enable safety warnings, gesture control, and voice and facial recognition.
  • Ericsson predicts that 5G technology will improve vehicle-to-vehicle communication wherein sensors will be implanted in airport runways, railways, and roads.

Conclusion

Jack Ma, the founder of Alibaba, warned the audience at the World Economic Forum 2018 at Davos that AI and big data were a threat to humans and would disable people instead of empowering them. However, given the sweeping real-world applications of AI and ML and the constant advancements in the field, it is more likely that the technology will transform the way we work—enabling faster, more informed decisions, increasing operational efficiency, and innovating new products and services.

Share this image on your site!

Data Visualization for Beginners

Bonjour! Welcome to another part of the series on data visualization techniques. In the previous two articles, we discussed different data visualization techniques that can be applied to visualize and gather insights from categorical and continuous variables. You can check out the first two articles here:

In this article, we’ll go through the implementation and use of a bunch of data visualization techniques such as heat maps, surface plots, correlation plots, etc. We will also look at different techniques that can be used to visualize unstructured data such as images, text, etc.

 ### Importing the required libraries   
 import pandas as pd   
 import numpy as np  
 import seaborn as sns   
 import matplotlib.pyplot as plt   
 import plotly.plotly as py  
 import plotly.graph_objs as go  
 %matplotlib inline  

Heatmaps

A heat map(or heatmap) is a two-dimensional graphical representation of the data which uses colour to represent data points on the graph. It is useful in understanding underlying relationships between data values that would be much harder to understand if presented numerically in a table/ matrix.

### We can create a heatmap by simply using the seaborn library.   
 sample_data = np.random.rand(8, 12)  
 ax = sns.heatmap(sample_data)  
Heatmaps, seaborn, python, matplot, data visualization
Fig 1. Heatmap using the seaborn library

Let’s understand this using an example. We’ll be using the metadata from Deep Learning 3 challenge. Link to the dataset. Deep Learning 3 challenged the participants to predict the attributes of animals by looking at their images.

 ### Training metadata contains the name of the image and the corresponding attributes associated with the animal in the image.  
 train = pd.read_csv('meta-data/train.csv')  
 train.head()  

We will be analyzing how often an attribute occurs in relationship with the other attributes. To analyze this relationship, we will compute the co-occurrence matrix.

 ### Extracting the attributes  
 cols = list(train.columns)  
 cols.remove('Image_name')  
 attributes = np.array(train[cols])  
 print('There are {} attributes associated with {} images.'.format(attributes.shape[1],attributes.shape[0]))  
 Out: There are 85 attributes associated with 12,600 images.  
 # Compute the co-occurrence matrix  
 cooccurrence_matrix = np.dot(attributes.transpose(), attributes)  
 print('\n Co-occurrence matrix: \n', cooccurrence_matrix)  
 Out: Co-occurrence matrix:   
  [[5091 728 797 ... 3797 728 2024]  
  [ 728 1614  0 ... 669 1614 1003]  
  [ 797  0 1188 ... 1188  0 359]  
  ...  
  [3797 669 1188 ... 8305 743 3629]  
  [ 728 1614  0 ... 743 1933 1322]  
  [2024 1003 359 ... 3629 1322 6227]]  
 # Normalizing the co-occurrence matrix, by converting the values into a matrix  
 # Compute the co-occurrence matrix in percentage  
 #Reference:https://stackoverflow.com/questions/20574257/constructing-a-co-occurrence-matrix-in-python-pandas/20574460  
 cooccurrence_matrix_diagonal = np.diagonal(cooccurrence_matrix)  
 with np.errstate(divide = 'ignore', invalid='ignore'):  
   cooccurrence_matrix_percentage = np.nan_to_num(np.true_divide(cooccurrence_matrix, cooccurrence_matrix_diagonal))  
 print('\n Co-occurrence matrix percentage: \n', cooccurrence_matrix_percentage)  

We can see that the values in the co-occurrence matrix represent the occurrence of each attribute with the other attributes. Although the matrix contains all the information, it is visually hard to interpret and infer from the matrix. To counter this problem, we will use heat maps, which can help relate the co-occurrences graphically.

 fig = plt.figure(figsize=(10, 10))  
 sns.set(style='white')  
 # Draw the heatmap with the mask and correct aspect ratio   
 ax = sns.heatmap(cooccurrence_matrix_percentage, cmap='viridis', center=0, square=True, linewidths=0.15, cbar_kws={"shrink": 0.5, "label": "Co-occurrence frequency"}, )  
 ax.set_title('Heatmap of the attributes')  
 ax.set_xlabel('Attributes')  
 ax.set_ylabel('Attributes')  
 plt.show()  
Heatmap, data visualization, python, co occurence, seaborn
Fig 2. Heatmap of the co-occurrence matrix indicating the frequency of occurrence of one attribute with other

Since the frequency of the co-occurrence is represented by a colour pallet, we can now easily interpret which attributes appear together the most. Thus, we can infer that these attributes are common to most of the animals.

Machine learning challenge, ML challenge

Choropleth

Choropleths are a type of map that provides an easy way to show how some quantity varies across a geographical area or show the level of variability within a region. A heat map is similar but doesn’t include geographical boundaries. Choropleth maps are also appropriate for indicating differences in the distribution of the data over an area, like ownership or use of land or type of forest cover, density information, etc. We will be using the geopandas library to implement the choropleth graph.

We will be using choropleth graph to visualize the GDP across the globe. Link to the dataset.

 # Importing the required libraries  
 import geopandas as gpd   
 from shapely.geometry import Point  
 from matplotlib import cm  
 # GDP mapped to the corresponding country and their acronyms  
 df =pd.read_csv('GDP.csv')  
 df.head()  
COUNTRY GDP (BILLIONS) CODE
0 Afghanistan 21.71 AFG
1 Albania 13.40 ALB
2 Algeria 227.80 DZA
3 American Samoa 0.75 ASM
4 Andorra 4.80 AND
### Importing the geometry locations of each country on the world map  
 geo = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))[['iso_a3', 'geometry']]  
 geo.columns = ['CODE', 'Geometry']  
 geo.head()  
# Mapping the country codes to the geometry locations  
 df = pd.merge(df, geo, left_on='CODE', right_on='CODE', how='inner')  
 #converting the dataframe to geo-dataframe  
 geometry = df['Geometry']  
 df.drop(['Geometry'], axis=1, inplace=True)  
 crs = {'init':'epsg:4326'}  
 geo_gdp = gpd.GeoDataFrame(df, crs=crs, geometry=geometry)  
 ## Plotting the choropleth  
 cpleth = geo_gdp.plot(column='GDP (BILLIONS)', cmap=cm.Spectral_r, legend=True, figsize=(8,8))  
 cpleth.set_title('Choropleth Graph - GDP of different countries')  
choropleth maps, choropleth graphs, data visualization techniques, python, big data, machine learning
Fig 3. Choropleth graph indicating the GDP according to geographical locations

Surface plot

Surface plots are used for the three-dimensional representation of the data. Rather than showing individual data points, surface plots show a functional relationship between a dependent variable (Z) and two independent variables (X and Y).

It is useful in analyzing relationships between the dependent and the independent variables and thus helps in establishing desirable responses and operating conditions.

 from mpl_toolkits.mplot3d import Axes3D  
 from matplotlib.ticker import LinearLocator, FormatStrFormatter  
 # Creating a figure  
 # projection = '3d' enables the third dimension during plot  
 fig = plt.figure(figsize=(10,8))  
 ax = fig.gca(projection='3d')  
 # Initialize data   
 X = np.arange(-5,5,0.25)  
 Y = np.arange(-5,5,0.25)  
 # Creating a meshgrid  
 X, Y = np.meshgrid(X, Y)  
 R = np.sqrt(np.abs(X**2 - Y**2))  
 Z = np.exp(R)  
 # plot the surface   
 surf = ax.plot_surface(X, Y, Z, cmap=cm.GnBu, antialiased=False)  
 # Customize the z axis.  
 ax.zaxis.set_major_locator(LinearLocator(10))  
 ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))  
 ax.set_title('Surface Plot')  
 # Add a color bar which maps values to colors.  
 fig.colorbar(surf, shrink=0.5, aspect=5)  
 plt.show()  

One of the main applications of surface plots in machine learning or data science is the analysis of the loss function. From a surface plot, we can analyze how the hyperparameters affect the loss function and thus help prevent overfitting of the model.

python, 3d plot, machine learning, data visualization, machine learning, loss function, gradient descent, big data
Fig 4. Surface plot visualizing the dependent variable w.r.t the independent variables in 3-dimensions

Visualizing high-dimensional datasets

Dimensionality refers to the number of attributes present in the dataset. For example, consumer-retail datasets can have a vast amount of variables (e.g. sales, promos, products, open, etc.). As a result, visually exploring the dataset to find potential correlations between variables becomes extremely challenging.

Therefore, we use a technique called dimensionality reduction to visualize higher dimensional datasets. Here, we will focus on two such techniques :

  • Principal Component Analysis (PCA)
  • T-distributed Stochastic Neighbor Embedding (t-SNE)

Principal Component Analysis (PCA)

Before we jump into understanding PCA, let’s review some terms:

  • Variance: Variance is simply the measure of the spread or extent of the data. Mathematically, it is the average squared deviation from the mean position.varaince, PCA, prinicipal component analysis
  • Covariance: Covariance is the measure of the extent to which corresponding elements from two sets of ordered data move in the same direction. It is the measure of how two random variables vary together. It is similar to variance, but where variance tells you the extent of one variable, covariance tells you the extent to which the two variables vary together. Mathematically, it is defined as:

A positive covariance means X and Y are positively related, i.e., if X increases, Y increases, while negative covariance means the opposite relation. However, zero variance means X and Y are not related.

PCA, Principal Component Analysis , dimension reduction, python, machine learning, big data, image classification
Fig 5. Different types of covariance

PCA is the orthogonal projection of data onto a lower-dimension linear space that maximizes variance (green line) of the projected data and minimizes the mean squared distance between the data point and the projects (blue line). The variance describes the direction of maximum information while the mean squared distance describes the information lost during projection of the data onto the lower dimension.

Thus, given a set of data points in a d-dimensional space, PCA projects these points onto a lower dimensional space while preserving as much information as possible.

 principal component analysis, machine learning, dimension reduction technqieus, data visualization techniques, deep learning, ICA, PCA
Fig 6. Illustration of principal component analysis

In the figure, the component along the direction of maximum variance is defined as the first principal axis. Similarly, the component along the direction of second maximum variance is defined as the second principal component, and so on. These principal components are referred to the new dimensions carrying the maximum information.

 # We will use the breast cancer dataset as an example  
 # The dataset is a binary classification dataset  
 # Importing the dataset  
 from sklearn.datasets import load_breast_cancer  
 data = load_breast_cancer()  
 X = pd.DataFrame(data=data.data, columns=data.feature_names) # Features   
 y = data.target # Target variable   
 # Importing PCA function  
 from sklearn.decomposition import PCA  
 pca = PCA(n_components=2) # n_components = number of principal components to generate  
 # Generating pca components from the data  
 pca_result = pca.fit_transform(X)  
 print("Explained variance ratio : \n",pca.explained_variance_ratio_)  
 Out: Explained variance ratio :   
  [0.98204467 0.01617649]  

We can see that 98% (approx) variance of the data is along the first principal component, while the second component only expresses 1.6% (approx) of the data.

 # Creating a figure   
 fig = plt.figure(1, figsize=(10, 10))  
 # Enabling 3-dimensional projection   
 ax = fig.gca(projection='3d')  
 for i, name in enumerate(data.target_names):  
   ax.text3D(np.std(pca_result[:, 0][y==i])-i*500 ,np.std(pca_result[:, 1][y==i]),0,s=name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))  
 # Plotting the PCA components    
 ax.scatter(pca_result[:,0], pca_result[:, 1], c=y, cmap = plt.cm.Spectral,s=20, label=data.target_names)  
 plt.show()  
PCA, principal component analysis, pca, ica, higher dimension data, dimension reduction techniques, data visualization of higher dimensions
Fig 7. Visualizing the distribution of cancer across the data

Thus, with the help of PCA, we can get a visual perception of how the labels are distributed across given data (see Figure).

T-distributed Stochastic Neighbour Embedding (t-SNE)

T-distributed Stochastic Neighbour Embeddings (t-SNE) is a non-linear dimensionality reduction technique that is well suited for visualization of high-dimensional data. It was developed by Laurens van der Maten and Geoffrey Hinton. In contrast to PCA, which is a mathematical technique, t-SNE adopts a probabilistic approach.

PCA can be used for capturing the global structure of the high-dimensional data but fails to describe the local structure within the data. Whereas, “t-SNE” is capable of capturing the local structure of the high-dimensional data very well while also revealing global structure such as the presence of clusters at several scales. t-SNE converts the similarity between data points to joint probabilities and tries to maximize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embeddings and high-dimension data. In doing so, it preserves the original structure of the data.

 # We will be using the scikit learn library to implement t-SNE  
 # Importing the t-SNE library   
 from sklearn.manifold import TSNE  
 # We will be using the iris dataset for this example  
 from sklearn.datasets import load_iris  
 # Loading the iris dataset   
 data = load_iris()  
 # Extracting the features   
 X = data.data  
 # Extracting the labels   
 y = data.target  
 # There are four features in the iris dataset with three different labels.  
 print('Features in iris data:\n', data.feature_names)  
 print('Labels in iris data:\n', data.target_names)  
 Out: Features in iris data:  
  ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']  
 Labels in iris data:  
  ['setosa' 'versicolor' 'virginica']  
 # Loading the TSNE model   
 # n_components = number of resultant components   
 # n_iter = Maximum number of iterations for the optimization.  
 tsne_model = TSNE(n_components=3, n_iter=2500, random_state=47)  
 # Generating new components   
 new_values = tsne_model.fit_transform(X)  
 labels = data.target_names  
 # Plotting the new dimensions/ components  
 fig = plt.figure(figsize=(5, 5))  
 ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)  
 for label, name in enumerate(labels):  
   ax.text3D(new_values[y==label, 0].mean(),  
        new_values[y==label, 1].mean() + 1.5,  
        new_values[y==label, 2].mean(), name,  
        horizontalalignment='center',  
        bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))  
 ax.scatter(new_values[:,0], new_values[:,1], new_values[:,2], c=y)  
 ax.set_title('High-Dimension data visualization using t-SNE', loc='right')  
 plt.show()  
Iris data set, Tsne, data visualization of words, data visualization techniques, dimension reduction techniques, higher dimension data
Fig 8. Visualizing the feature space of the iris dataset using t-SNE

Thus, by reducing the dimensions using t-SNE, we can visualize the distribution of the labels over the feature space. We can see that in the figure the labels are clustered in their own little group. So, if we’re to use a clustering algorithm to generate clusters using the new features/components, we can accurately assign new points to a label.

Conclusion

Let’s quickly summarize the topics we covered. We started with the generation of heatmaps using random numbers and extended its application to a real-world example. Next, we implemented choropleth graphs to visualize the data points with respect to geographical locations. We moved on to implement surface plots to get an idea of how we can visualize the data in a three-dimensional surface. Finally, we used two- dimensional reduction techniques, PCA and t-SNE, to visualize high-dimensional datasets.

I encourage you to implement the examples described in this article to get a hands-on experience. Hope you enjoyed the article. Do let me know if you have any feedback, suggestions, or thoughts on this article in the comments below!

World Music Hackathon: Re-engineering Music

Music is the universal language of mankind—a great uniter. It’s astonishing how music can connect souls, overcome barriers, and bring people closer. It is something that people who differ on anything and everything can have in common.

The World Music Hackathon is a festival of music, innovation, and creativity. We are pushing down the boundaries between “hacking” and “music” to bring the music and tech world together. There are no limits to what you can create; we encourage hacking of music in the broadest conceivable sense, for example, through instrument-building, data visualization, collaboration, improvisation, or any other way you can imagine.

There are craftsmen, researchers, and other music programmers who are doing great work in the field of music, however, they are not getting the consideration they merit for whatever reason.

This is your platform to change the future of the underserved music community and is by no means is limited to young and old, regional or cultural genres or gender identity. It is a platform that can induce diversity across backgrounds, perspectives, and abilities to drive personal growth through creation, collaboration, and communication.

Music is becoming more digital every day. What's more, the World Music Hackathon is the phase to explore different avenues regarding its progression and create thoughts for the future of music and music groups.

Your ideas can connect the artist with his or her audience, on- and offline, real-time or over time. Your ideas will interface the path in rethinking and re-engineering music for the digital age.

Here are the primary focus areas:
  • Enabling music for the disabled: For people with disabilities, technology has the potential to unlock new possibilities. Technology can enable communication, navigation, and independence of disabled people while learning and creating music.
  • Anti-piracy: According to Woolley, about 12.5 billion dollars are lost due to file sharing and music piracy, and 5 billion of that is profits lost from the music industry directly every year. Innovative technology can minimize and discourage music piracy.
  • Improving music recommendations: With the advent of technology, the glory of Radio DJs has passed, replacing musical gatekeepers with personalized algorithms and unlimited streaming services. With listeners now interested in a very diverse genre of music, content recommendation is at the heart of most subscription-based streaming platforms to enhance user experience and increase user engagement.
  • Ease of learning and playing music: New innovations provide fun and creative ways to enhance the learning experience. Apps and online tools can ease the more unsavory aspects of learning an instrument through gamification and progress tracking which help the learner stay motivated.
  • Innovate (reengineering music for the digital age): Innovate solutions that can make a difference in the world of music. You are only limited by your own imagination of what you can create.
We wish to bring together creative developer, designers, musicians, and product visionaries to test ideas and create products with the potential to change the world of music. There’s a lot that can be done here, so let’s unpack those beautiful ideas.Also, in addition to being good for humanity, this also helps foster innovation.
In the Spotlight

Technical Screening Guide: All You Need To Know

Read this guide and learn how you can establish a less frustrating developer hiring workflow for both hiring teams and candidates.
Read More
Top Products

Explore HackerEarth’s top products for Hiring & Innovation

Discover powerful tools designed to streamline hiring, assess talent efficiently, and run seamless hackathons. Explore HackerEarth’s top products that help businesses innovate and grow.
Frame
Hackathons
Engage global developers through innovation
Arrow
Frame 2
Assessments
AI-driven advanced coding assessments
Arrow
Frame 3
FaceCode
Real-time code editor for effective coding interviews
Arrow
Frame 4
L & D
Tailored learning paths for continuous assessments
Arrow
Authors

Meet our Authors

Get to know the experts behind our content. From industry leaders to tech enthusiasts, our authors share valuable insights, trends, and expertise to keep you informed and inspired.
Ruehie Jaiya Karri
Kumari Trishya

Forecasting Tech Hiring Trends For 2023 With 6 Experts

2023 is here, and it is time to look ahead. Start planning your tech hiring needs as per your business requirements, revamp your recruiting processes, and come up with creative ways to land that perfect “unicorn candidate”!

Right? Well, jumping in blindly without heeding what this year holds for you can be a mistake. So before you put together your plans, ask yourselves this—What are the most important 2023 recruiting trends in tech hiring that you should be prepared for? What are the predictions that will shape this year?

We went around and posed three important questions to industry experts that were on our minds. And what they had to say certainly gave us some food for thought!

Before we dive in, allow me to introduce you to our expert panel of six, who had so much to say from personal experience!

Meet the Expert Panel

Radoslav Stankov

Radoslav Stankov has more than 20 years of experience working in tech. He is currently Head of Engineering at Product Hunt. Enjoys blogging, conference speaking, and solving problems.

Mike Cohen

Mike “Batman” Cohen is the Founder of Wayne Technologies, a Sourcing-as-a-Service company providing recruitment data and candidate outreach services to enhance the talent acquisition journey.

Pamela Ilieva

Pamela Ilieva is the Director of International Recruitment at Shortlister, a platform that connects employers to wellness, benefits, and HR tech vendors.

Brian H. Hough

Brian H. Hough is a Web2 and Web3 software engineer, AWS Community Builder, host of the Tech Stack Playbook™ YouTube channel/podcast, 5-time global hackathon winner, and tech content creator with 10k+ followers.

Steve O'Brien

Steve O'Brien is Senior Vice President, Talent Acquisition at Syneos Health, leading a global team of top recruiters across 30+ countries in 24+ languages, with nearly 20 years of diverse recruitment experience.

Patricia (Sonja Sky) Gatlin

Patricia (Sonja Sky) Gatlin is a New York Times featured activist, DEI Specialist, EdTechie, and Founder of Newbies in Tech. With 10+ years in Higher Education and 3+ in Tech, she now works part-time as a Diversity Lead recruiting STEM professionals to teach gifted students.

Overview of the upcoming tech industry landscape in 2024

Continued emphasis on remote work and flexibility: As we move into 2024, the tech industry is expected to continue embracing remote work and flexible schedules. This trend, accelerated by the COVID-19 pandemic, has proven to be more than a temporary shift. Companies are finding that remote work can lead to increased productivity, a broader talent pool, and better work-life balance for employees. As a result, recruiting strategies will likely focus on leveraging remote work capabilities to attract top talent globally.

Rising demand for AI and Machine Learning Skills: Artificial Intelligence (AI) and Machine Learning (ML) continue to be at the forefront of technological advancement. In 2024, these technologies are expected to become even more integrated into various business processes, driving demand for professionals skilled in AI and ML. Companies will likely prioritize candidates with expertise in these areas, and there may be an increased emphasis on upskilling existing employees to meet this demand.

Increased focus on cybersecurity: With the digital transformation of businesses, cybersecurity remains a critical concern. The tech industry in 2024 is anticipated to see a surge in the need for cybersecurity professionals. Companies will be on the lookout for talent capable of protecting against evolving cyber threats and ensuring data privacy.

Growth in cloud computing and edge computing: Cloud computing continues to grow, but there is also an increasing shift towards edge computing – processing data closer to where it is generated. This shift will likely create new job opportunities and skill requirements, influencing recruiting trends in the tech industry.

Sustainable technology and green computing: The global emphasis on sustainability is pushing the tech industry towards green computing and environmentally friendly technologies. In 2024, companies may seek professionals who can contribute to sustainable technology initiatives, adding a new dimension to tech recruiting.

Emphasis on soft skills: While technical skills remain paramount, soft skills like adaptability, communication, and problem-solving are becoming increasingly important. Companies are recognizing the value of these skills in fostering innovation and teamwork, especially in a remote or hybrid work environment.

Diversity, Equity, and Inclusion (DEI): There is an ongoing push towards more diverse and inclusive workplaces. In 2024, tech companies will likely continue to strengthen their DEI initiatives, affecting how they recruit and retain talent.

6 industry experts predict the 2023 recruiting trends

#1 We've seen many important moments in the tech industry this year...

Rado: In my opinion, a lot of those will carry over. I felt this was a preparation year for what was to come...

Mike: I wish I had the crystal ball for this, but I hope that when the market starts picking up again...

Pamela: Quiet quitting has been here way before 2022, and it is here to stay if organizations and companies...

Pamela Ilieva, Director of International Recruitment, Shortlister

Also, read: What Tech Companies Need To Know About Quiet Quitting


Brian: Yes, absolutely. In the 2022 Edelman Trust Barometer report...

Steve: Quiet quitting in the tech space will naturally face pressure as there is a redistribution of tech talent...

Patricia: Quiet quitting has been around for generations—people doing the bare minimum because they are no longer incentivized...

Patricia Gatlin, DEI Specialist and Curator, #blacklinkedin

#2 What is your pro tip for HR professionals/engineering managers...

Rado: Engineering managers should be able to do "more-with-less" in the coming year.

Radoslav Stankov, Head of Engineering, Product Hunt

Mike: Well first, (shameless plug), be in touch with me/Wayne Technologies as a stop-gap for when the time comes.

Mike “Batman” Cohen, Founder of Wayne Technologies

It's in the decrease and increase where companies find the hardest challenges...

Pamela: Remain calm – no need to “add fuel to the fire”!...

Brian: We have to build during the bear markets to thrive in the bull markets.

Companies can create internal hackathons to exercise creativity...


Also, read: Internal Hackathons - Drive Innovation And Increase Engagement In Tech Teams


Steve: HR professionals facing a hiring freeze will do well to “upgrade” processes, talent, and technology aggressively during downtime...

Steve O'Brien, Senior Vice President, Talent Acquisition at Syneos Health

Patricia: Talk to hiring managers in all your departments. Ask, what are the top 3-5 roles they are hiring for in the new year?...


Also, watch: 5 Recruiting Tips To Navigate The Hiring Freeze With Shalini Chandra, Senior TA, HackerEarth


#3 What top 3 skills would you like HR professionals/engineering managers to add to their repertoire in 2023 to deal with upcoming challenges?

6 industry experts predict the 2023 recruiting trends

Rado: Prioritization, team time, and environment management.

I think "prioritization" and "team time" management are obvious. But what do I mean by "environment management"?

A productive environment is one of the key ingredients for a productive team. Look at where your team wastes most time, which can be automated. For example, end-to-end writing tests take time because our tools are cumbersome and undocumented. So let's improve this.

Mike: Setting better metrics/KPIs, moving away from LinkedIn, and sharing more knowledge.

  1. Metrics/KPIs: Become better at setting measurable KPIs and accountable metrics. They are not the same thing—it's like the Square and Rectangle. One fits into the other but they're not the same. Hold people accountable to metrics, not KPIs. Make sure your metrics are aligned with company goals and values, and that they push employees toward excellence, not mediocrity.
  2. Freedom from LinkedIn: This is every year, and will probably continue to be. LinkedIn is a great database, but it is NOT the only way to find candidates, and oftentimes, not even the most effective/efficient. Explore other tools and methodologies!
  3. Join the conversation: I'd love to see new names of people presenting at conferences and webinars. And also, see new authors on the popular TA content websites. Everyone has things they can share—be a part of the community, not just a user of. Join FB groups, write and post articles, and comment on other people's posts with more than 'Great article'. It's a great community, but it's only great because of the people who contribute to it—be one of those people.

Pamela: Resilience, leveraging data, and self-awareness.

  1. Resilience: A “must-have” skill for the 21st century due to constant changes in the tech industry. Face and adapt to challenges. Overcome them and handle disappointments. Never give up. This will keep HR people alive in 2023.
  2. Data skills: Get some data analyst skills. The capacity to transfer numbers into data can help you be a better HR professional, prepared to improve the employee experience and show your leadership team how HR is leveraging data to drive business results.
  3. Self-awareness: Allows you to react better to upsetting situations and workplace challenges. It is a healthy skill to cultivate – especially as an HR professional.

Also, read: Diving Deep Into The World Of Data Science With Ashutosh Kumar


Brian: Agility, resourcefulness, and empathy.

  1. Agility: Allows professionals to move with market conditions. Always be as prepared as possible for any situation to come. Be flexible based on what does or does not happen.
  2. Resourcefulness: Allows professionals to do more with less. It also helps them focus on how to amplify, lift, and empower the current teams to be the best they can be.
  3. Empathy: Allows professionals to take a more proactive approach to listening and understanding where all workers are coming from. Amid stressful situations, companies need empathetic team members and leaders alike who can meet each other wherever they are and be a support.

Steve: Negotiation, data management, and talent development.

  1. Negotiation: Wage transparency laws will fundamentally change the compensation conversation. We must ensure we are still discussing compensation early in the process. And not just “assume” everyone’s on the same page because “the range is published”.
  2. Data management and predictive analytics: Looking at your organization's talent needs as a casserole of indistinguishable components and demands will not be good enough. We must upgrade the accuracy and consistency of our data and the predictions we can make from it.

Also, read: The Role of Talent Intelligence in Optimizing Recruitment


  1. Talent development: We’ve been exploring the interplay between TA and TM for years. Now is the time to integrate your internal and external talent marketplaces. To provide career experiences to people within your organization and not just those joining your organization.

Patricia: Technology, research, and relationship building.

  1. Technology: Get better at understanding the technology that’s out there. To help you speed up the process, track candidate experience, but also eliminate bias. Metrics are becoming big in HR.
  2. Research: Honestly, read more books. Many great thought leaders put out content about the “future of work”, understanding “Gen Z”, or “quiet quitting.” Dedicate work hours to understanding your ever-changing field.
  3. Relationship Building: Especially in your immediate communities. Most people don’t know who you are or what exactly it is that you do. Build your personal brand and what you are doing at your company to impact those closest to you. Create a referral funnel to get a pipeline going. When people want a job you and your company ought to be top of mind. Also, tell the stories of the people that work there.

7 Tech Recruiting Trends To Watch Out For In 2024

The last couple of years transformed how the world works and the tech industry is no exception. Remote work, a candidate-driven market, and automation are some of the tech recruiting trends born out of the pandemic.

While accepting the new reality and adapting to it is the first step, keeping up with continuously changing hiring trends in technology is the bigger challenge right now.

What does 2024 hold for recruiters across the globe? What hiring practices would work best in this post-pandemic world? How do you stay on top of the changes in this industry?

The answers to these questions will paint a clearer picture of how to set up for success while recruiting tech talent this year.

7 tech recruiting trends for 2024

6 Tech Recruiting Trends To Watch Out For In 2022

Recruiters, we’ve got you covered. Here are the tech recruiting trends that will change the way you build tech teams in 2024.

Trend #1—Leverage data-driven recruiting

Data-driven recruiting strategies are the answer to effective talent sourcing and a streamlined hiring process.

Talent acquisition leaders need to use real-time analytics like pipeline growth metrics, offer acceptance rates, quality and cost of new hires, and candidate feedback scores to reduce manual work, improve processes, and hire the best talent.

The key to capitalizing on talent market trends in 2024 is data. It enables you to analyze what’s working and what needs refinement, leaving room for experimentation.

Trend #2—Have impactful employer branding

98% of recruiters believe promoting company culture helps sourcing efforts as seen in our 2021 State Of Developer Recruitment report.

Having a strong employer brand that supports a clear Employer Value Proposition (EVP) is crucial to influencing a candidate’s decision to work with your company. Perks like upskilling opportunities, remote work, and flexible hours are top EVPs that attract qualified candidates.

A clear EVP builds a culture of balance, mental health awareness, and flexibility—strengthening your employer brand with candidate-first policies.

Trend #3—Focus on candidate-driven market

The pandemic drastically increased the skills gap, making tech recruitment more challenging. With the severe shortage of tech talent, candidates now hold more power and can afford to be selective.

Competitive pay is no longer enough. Use data to understand what candidates want—work-life balance, remote options, learning opportunities—and adapt accordingly.

Recruiters need to think creatively to attract and retain top talent.


Recommended read: What NOT To Do When Recruiting Fresh Talent


Trend #4—Have a diversity and inclusion oriented company culture

Diversity and inclusion have become central to modern recruitment. While urgent hiring can delay D&I efforts, long-term success depends on inclusive teams. Our survey shows that 25.6% of HR professionals believe a diverse leadership team helps build stronger pipelines and reduces bias.

McKinsey’s Diversity Wins report confirms this: top-quartile gender-diverse companies see 25% higher profitability, and ethnically diverse teams show 36% higher returns.

It's refreshing to see the importance of an inclusive culture increasing across all job-seeking communities, especially in tech. This reiterates that D&I is a must-have, not just a good-to-have.

—Swetha Harikrishnan, Sr. HR Director, HackerEarth

Recommended read: Diversity And Inclusion in 2022 - 5 Essential Rules To Follow


Trend #5—Embed automation and AI into your recruitment systems

With the rise of AI tools like ChatGPT, automation is being adopted across every business function—including recruiting.

Manual communication with large candidate pools is inefficient. In 2024, recruitment automation and AI-powered platforms will automate candidate nurturing and communication, providing a more personalized experience while saving time.

Trend #6—Conduct remote interviews

With 32.5% of companies planning to stay remote, remote interviewing is here to stay.

Remote interviews expand access to global talent, reduce overhead costs, and increase flexibility—making the hiring process more efficient for both recruiters and candidates.

Trend #7—Be proactive in candidate engagement

Delayed responses or lack of updates can frustrate candidates and impact your brand. Proactive communication and engagement with both active and passive candidates are key to successful recruiting.

As recruitment evolves, proactive candidate engagement will become central to attracting and retaining talent. In 2023 and beyond, companies must engage both active and passive candidates through innovative strategies and technologies like chatbots and AI-powered systems. Building pipelines and nurturing relationships will enhance employer branding and ensure long-term hiring success.

—Narayani Gurunathan, CEO, PlaceNet Consultants

Recruiting Tech Talent Just Got Easier With HackerEarth

Recruiting qualified tech talent is tough—but we’re here to help. HackerEarth for Enterprises offers an all-in-one suite that simplifies sourcing, assessing, and interviewing developers.

Our tech recruiting platform enables you to:

  • Tap into a 6 million-strong developer community
  • Host custom hackathons to engage talent and boost your employer brand
  • Create online assessments to evaluate 80+ tech skills
  • Use dev-friendly IDEs and proctoring for reliable evaluations
  • Benchmark candidates against a global community
  • Conduct live coding interviews with FaceCode, our collaborative coding interview tool
  • Guide upskilling journeys via our Learning and Development platform
  • Integrate seamlessly with all leading ATS systems
  • Access 24/7 support with a 95% satisfaction score

Recommended read: The A-Zs Of Tech Recruiting - A Guide


Staying ahead of tech recruiting trends, improving hiring processes, and adapting to change is the way forward in 2024. Take note of the tips in this article and use them to build a future-ready hiring strategy.

Ready to streamline your tech recruiting? Try HackerEarth for Enterprises today.

Code In Progress - The Life And Times Of Developers In 2021

Developers. Are they as mysterious as everyone makes them out to be? Is coding the only thing they do all day? Good coders work around the clock, right?

While developers are some of the most coveted talent out there, they also have the most myths being circulated. Most of us forget that developers too are just like us. And no, they do not code all day long.

We wanted to bust a lot of these myths and shed light on how the programming world looks through a developer’s lens in 2021—especially in the wake of a global pandemic. This year’s edition of the annual HackerEarth Developer Survey is packed with developers’ wants and needs when choosing jobs, major gripes with the WFH scenario, and the latest market trends to watch out for, among others.

Our 2021 report is bigger and better, with responses from 25,431 developers across 171 countries. Let’s find out what makes a developer tick, shall we?

Developer Survey

“Good coders work around the clock.” No, they don’t.

Busting the myth that developers spend the better part of their day coding, 52% of student developers said that they prefer to code for a maximum of 3 hours per day.

When not coding, devs swear by their walks as a way to unwind. When we asked devs the same question last year, they said they liked to indulge in indoor games like foosball. In 2021, going for walks has become the most popular method of de-stressing. We’re chalking it up to working from home and not having a chance to stretch their legs.

Staying ahead of the skills game

Following the same trend as last year, students (39%) and working professionals (44%) voted for Go as one of the most popular programming languages that they want to learn. The other programming languages that devs are interested in learning are Rust, Kotlin, and Erlang.

Programming languages that students are most skilled at are HTML/CSS, C++, and Python. Senior developers are more comfortable working with HTML/CSS, SQL, and Java.

How happy are developers

Employees from middle market organizations had the highest 'happiness index' of 7.2. Experienced developers who work at enterprises are marginally less happy in comparison to people who work at smaller companies.

However, happiness is not a binding factor for where developers work. Despite scoring the least on the happiness scale, working professionals would still like to work at enterprise companies and growth-stage startups.

What works when looking for work

Student devs (63%), who are just starting in the tech world, said a good career growth curve is a must-have. Working professionals can be wooed by offers of a good career path (69%) and compensation (68%).

One trend that has changed since last year is that at least 50% of students and working professionals alike care a lot more about ESOPs and positive Glassdoor reviews now than they did in 2020.


To know more about what developers want, download your copy of the report now!


We went a step further and organized an event with our CEO, Sachin Gupta, Radoslav Stankov, Head of Engineering at Product Hunt, and Steve O’Brien, President of Talent Solutions at Job.com to further dissect the findings of our survey.

Tips straight from the horse’s mouth

Steve highlighted how the information collated from the developer survey affects the recruiting community and how they can leverage this data to hire better and faster.

  • The insight where developer happiness is correlated to work hours didn’t find a significant difference between the cohorts. Devs working for less than 40 hours seemed marginally happier than those that clocked in more than 60 hours a week.
“This is an interesting data point, which shows that devs are passionate about what they do. You can increase their workload by 50% and still not affect their happiness. From a work perspective, as a recruiter, you have to get your hiring manager to understand that while devs never say no to more work, HMs shouldn’t overload the devs. Devs are difficult to source and burnout only leads to killing your talent pool, which is something that you do not want,” says Steve.
  • Roughly 45% of both student and professional developers learned how to code in college was another insight that was open to interpretation.
“Let’s look at it differently. Less than half of the surveyed developers learned how to code in college. There’s a major segment of the market today that is not necessarily following the ‘college degree to getting a job’ path. Developers are beginning to look at their skillsets differently and using various platforms to upskill themselves. Development is not about pedigree, it’s more about the potential to demonstrate skills. This is an interesting shift in the way we approach testing and evaluating devs in 2021.”

Rado contextualized the data from the survey to see what it means for the developer community and what trends to watch out for in 2021.

  • Node.js and AngularJS are the most popular frameworks among students and professionals.
“I was surprised by how many young students wanted to learn AngularJS, given that it’s more of an enterprise framework. Another thing that stood out to me was that the younger generation wants to learn technologies that are not necessarily cool like ExtJS (35%). This is good because people are picking technologies that they enjoy working with instead of just going along with what everyone else is doing. This also builds a more diverse technology pool.” — Rado
  • 22% of devs say ‘Zoom Fatigue’ is real and directly affects productivity.
“Especially for younger people who still haven’t figured out a routine to develop their skills, there is something I’d like you to try out. Start using noise-canceling headphones. They help keep distractions to a minimum. I find clutter-free working spaces to be an interesting concept as well.”

The last year and a half have been a doozy for developers everywhere, with a lot of things changing, and some things staying the same. With our developer survey, we wanted to shine the spotlight on skill-based hiring and market trends in 2021—plus highlight the fact that developers too have their gripes and happy hours.

Uncover many more developer trends for 2021 with Steve and Rado below:

View all

Best Pre-Employment Assessments: Optimizing Your Hiring Process for 2024

In today's competitive talent market, attracting and retaining top performers is crucial for any organization's success. However, traditional hiring methods like relying solely on resumes and interviews may not always provide a comprehensive picture of a candidate's skills and potential. This is where pre-employment assessments come into play.

What is Pre-Employement Assessment?

Pre-employment assessments are standardized tests and evaluations administered to candidates before they are hired. These assessments can help you objectively measure a candidate's knowledge, skills, abilities, and personality traits, allowing you to make data-driven hiring decisions.

By exploring and evaluating the best pre-employment assessment tools and tests available, you can:

  • Improve the accuracy and efficiency of your hiring process.
  • Identify top talent with the right skills and cultural fit.
  • Reduce the risk of bad hires.
  • Enhance the candidate experience by providing a clear and objective evaluation process.

This guide will provide you with valuable insights into the different types of pre-employment assessments available and highlight some of the best tools, to help you optimize your hiring process for 2024.

Why pre-employment assessments are key in hiring

While resumes and interviews offer valuable insights, they can be subjective and susceptible to bias. Pre-employment assessments provide a standardized and objective way to evaluate candidates, offering several key benefits:

  • Improved decision-making:

    By measuring specific skills and knowledge, assessments help you identify candidates who possess the qualifications necessary for the job.

  • Reduced bias:

    Standardized assessments mitigate the risks of unconscious bias that can creep into traditional interview processes.

  • Increased efficiency:

    Assessments can streamline the initial screening process, allowing you to focus on the most promising candidates.

  • Enhanced candidate experience:

    When used effectively, assessments can provide candidates with a clear understanding of the required skills and a fair chance to showcase their abilities.

Types of pre-employment assessments

There are various types of pre-employment assessments available, each catering to different needs and objectives. Here's an overview of some common types:

1. Skill Assessments:

  • Technical Skills: These assessments evaluate specific technical skills and knowledge relevant to the job role, such as programming languages, software proficiency, or industry-specific expertise. HackerEarth offers a wide range of validated technical skill assessments covering various programming languages, frameworks, and technologies.
  • Soft Skills: These employment assessments measure non-technical skills like communication, problem-solving, teamwork, and critical thinking, crucial for success in any role.

2. Personality Assessments:

These employment assessments can provide insights into a candidate's personality traits, work style, and cultural fit within your organization.

3. Cognitive Ability Tests:

These tests measure a candidate's general mental abilities, such as reasoning, problem-solving, and learning potential.

4. Integrity Assessments:

These employment assessments aim to identify potential risks associated with a candidate's honesty, work ethic, and compliance with company policies.

By understanding the different types of assessments and their applications, you can choose the ones that best align with your specific hiring needs and ensure you hire the most qualified and suitable candidates for your organization.

Leading employment assessment tools and tests in 2024

Choosing the right pre-employment assessment tool depends on your specific needs and budget. Here's a curated list of some of the top pre-employment assessment tools and tests available in 2024, with brief overviews:

  • HackerEarth:

    A comprehensive platform offering a wide range of validated skill assessments in various programming languages, frameworks, and technologies. It also allows for the creation of custom assessments and integrates seamlessly with various recruitment platforms.

  • SHL:

    Provides a broad selection of assessments, including skill tests, personality assessments, and cognitive ability tests. They offer customizable solutions and cater to various industries.

  • Pymetrics:

    Utilizes gamified assessments to evaluate cognitive skills, personality traits, and cultural fit. They offer a data-driven approach and emphasize candidate experience.

  • Wonderlic:

    Offers a variety of assessments, including the Wonderlic Personnel Test, which measures general cognitive ability. They also provide aptitude and personality assessments.

  • Harver:

    An assessment platform focusing on candidate experience with video interviews, gamified assessments, and skills tests. They offer pre-built assessments and customization options.

Remember: This list is not exhaustive, and further research is crucial to identify the tool that aligns best with your specific needs and budget. Consider factors like the types of assessments offered, pricing models, integrations with your existing HR systems, and user experience when making your decision.

Choosing the right pre-employment assessment tool

Instead of full individual tool reviews, consider focusing on 2–3 key platforms. For each platform, explore:

  • Target audience: Who are their assessments best suited for (e.g., technical roles, specific industries)?
  • Types of assessments offered: Briefly list the available assessment categories (e.g., technical skills, soft skills, personality).
  • Key features: Highlight unique functionalities like gamification, custom assessment creation, or seamless integrations.
  • Effectiveness: Briefly mention the platform's approach to assessment validation and reliability.
  • User experience: Consider including user reviews or ratings where available.

Comparative analysis of assessment options

Instead of a comprehensive comparison, consider focusing on specific use cases:

  • Technical skills assessment:

    Compare HackerEarth and Wonderlic based on their technical skill assessment options, focusing on the variety of languages/technologies covered and assessment formats.

  • Soft skills and personality assessment:

    Compare SHL and Pymetrics based on their approaches to evaluating soft skills and personality traits, highlighting any unique features like gamification or data-driven insights.

  • Candidate experience:

    Compare Harver and Wonderlic based on their focus on candidate experience, mentioning features like video interviews or gamified assessments.

Additional tips:

  • Encourage readers to visit the platforms' official websites for detailed features and pricing information.
  • Include links to reputable third-party review sites where users share their experiences with various tools.

Best practices for using pre-employment assessment tools

Integrating pre-employment assessments effectively requires careful planning and execution. Here are some best practices to follow:

  • Define your assessment goals:

    Clearly identify what you aim to achieve with assessments. Are you targeting specific skills, personality traits, or cultural fit?

  • Choose the right assessments:

    Select tools that align with your defined goals and the specific requirements of the open position.

  • Set clear expectations:

    Communicate the purpose and format of the assessments to candidates in advance, ensuring transparency and building trust.

  • Integrate seamlessly:

    Ensure your chosen assessment tool integrates smoothly with your existing HR systems and recruitment workflow.

  • Train your team:

    Equip your hiring managers and HR team with the knowledge and skills to interpret assessment results effectively.

Interpreting assessment results accurately

Assessment results offer valuable data points, but interpreting them accurately is crucial for making informed hiring decisions. Here are some key considerations:

  • Use results as one data point:

    Consider assessment results alongside other information, such as resumes, interviews, and references, for a holistic view of the candidate.

  • Understand score limitations:

    Don't solely rely on raw scores. Understand the assessment's validity and reliability and the potential for cultural bias or individual test anxiety.

  • Look for patterns and trends:

    Analyze results across different assessments and identify consistent patterns that align with your desired candidate profile.

  • Focus on potential, not guarantees:

    Assessments indicate potential, not guarantees of success. Use them alongside other evaluation methods to make well-rounded hiring decisions.

Choosing the right pre-employment assessment tools

Selecting the most suitable pre-employment assessment tool requires careful consideration of your organization's specific needs. Here are some key factors to guide your decision:

  • Industry and role requirements:

    Different industries and roles demand varying skill sets and qualities. Choose assessments that target the specific skills and knowledge relevant to your open positions.

  • Company culture and values:

    Align your assessments with your company culture and values. For example, if collaboration is crucial, look for assessments that evaluate teamwork and communication skills.

  • Candidate experience:

    Prioritize tools that provide a positive and smooth experience for candidates. This can enhance your employer brand and attract top talent.

Budget and accessibility considerations

Budget and accessibility are essential factors when choosing pre-employment assessments:

  • Budget:

    Assessment tools come with varying pricing models (subscriptions, pay-per-use, etc.). Choose a tool that aligns with your budget and offers the functionalities you need.

  • Accessibility:

    Ensure the chosen assessment is accessible to all candidates, considering factors like language options, disability accommodations, and internet access requirements.

Additional Tips:

  • Free trials and demos: Utilize free trials or demos offered by assessment platforms to experience their functionalities firsthand.
  • Consult with HR professionals: Seek guidance from HR professionals or recruitment specialists with expertise in pre-employment assessments.
  • Read user reviews and comparisons: Gain insights from other employers who use various assessment tools.

By carefully considering these factors, you can select the pre-employment assessment tool that best aligns with your organizational needs, budget, and commitment to an inclusive hiring process.

Remember, pre-employment assessments are valuable tools, but they should not be the sole factor in your hiring decisions. Use them alongside other evaluation methods and prioritize building a fair and inclusive hiring process that attracts and retains top talent.

Future trends in pre-employment assessments

The pre-employment assessment landscape is constantly evolving, with innovative technologies and practices emerging. Here are some potential future trends to watch:

  • Artificial intelligence (AI):

    AI-powered assessments can analyze candidate responses, written work, and even resumes, using natural language processing to extract relevant insights and identify potential candidates.

  • Adaptive testing:

    These assessments adjust the difficulty level of questions based on the candidate's performance, providing a more efficient and personalized evaluation.

  • Micro-assessments:

    Short, focused assessments delivered through mobile devices can assess specific skills or knowledge on-the-go, streamlining the screening process.

  • Gamification:

    Engaging and interactive game-based elements can make the assessment experience more engaging and assess skills in a realistic and dynamic way.

Conclusion

Pre-employment assessments, when used thoughtfully and ethically, can be a powerful tool to optimize your hiring process, identify top talent, and build a successful workforce for your organization. By understanding the different types of assessments available, exploring top-rated tools like HackerEarth, and staying informed about emerging trends, you can make informed decisions that enhance your ability to attract, evaluate, and hire the best candidates for the future.

Tech Layoffs: What To Expect In 2024

Layoffs in the IT industry are becoming more widespread as companies fight to remain competitive in a fast-changing market; many turn to layoffs as a cost-cutting measure. Last year, 1,000 companies including big tech giants and startups, laid off over two lakhs of employees. But first, what are layoffs in the tech business, and how do they impact the industry?

Tech layoffs are the termination of employment for some employees by a technology company. It might happen for various reasons, including financial challenges, market conditions, firm reorganization, or the after-effects of a pandemic. While layoffs are not unique to the IT industry, they are becoming more common as companies look for methods to cut costs while remaining competitive.

The consequences of layoffs in technology may be catastrophic for employees who lose their jobs and the firms forced to make these difficult decisions. Layoffs can result in the loss of skill and expertise and a drop in employee morale and productivity. However, they may be required for businesses to stay afloat in a fast-changing market.

This article will examine the reasons for layoffs in the technology industry, their influence on the industry, and what may be done to reduce their negative impacts. We will also look at the various methods for tracking tech layoffs.

What are tech layoffs?

The term "tech layoff" describes the termination of employees by an organization in the technology industry. A company might do this as part of a restructuring during hard economic times.

In recent times, the tech industry has witnessed a wave of significant layoffs, affecting some of the world’s leading technology companies, including Amazon, Microsoft, Meta (formerly Facebook), Apple, Cisco, SAP, and Sony. These layoffs are a reflection of the broader economic challenges and market adjustments facing the sector, including factors like slowing revenue growth, global economic uncertainties, and the need to streamline operations for efficiency.

Each of these tech giants has announced job cuts for various reasons, though common themes include restructuring efforts to stay competitive and agile, responding to over-hiring during the pandemic when demand for tech services surged, and preparing for a potentially tough economic climate ahead. Despite their dominant positions in the market, these companies are not immune to the economic cycles and technological shifts that influence operational and strategic decisions, including workforce adjustments.

This trend of layoffs in the tech industry underscores the volatile nature of the tech sector, which is often at the mercy of rapid changes in technology, consumer preferences, and the global economy. It also highlights the importance of adaptability and resilience for companies and employees alike in navigating the uncertainties of the tech landscape.

Causes for layoffs in the tech industry

Why are tech employees suffering so much?

Yes, the market is always uncertain, but why resort to tech layoffs?

Various factors cause tech layoffs, including company strategy changes, market shifts, or financial difficulties. Companies may lay off employees if they need help to generate revenue, shift their focus to new products or services, or automate certain jobs.

In addition, some common reasons could be:

Financial struggles

Currently, the state of the global market is uncertain due to economic recession, ongoing war, and other related phenomena. If a company is experiencing financial difficulties, only sticking to pay cuts may not be helpful—it may need to reduce its workforce to cut costs.


Also, read: 6 Steps To Create A Detailed Recruiting Budget (Template Included)


Changes in demand

The tech industry is constantly evolving, and companies would have to adjust their workforce to meet changing market conditions. For instance, companies are adopting remote work culture, which surely affects on-premises activity, and companies could do away with some number of tech employees at the backend.

Restructuring

Companies may also lay off employees as part of a greater restructuring effort, such as spinning off a division or consolidating operations.

Automation

With the advancement in technology and automation, some jobs previously done by human labor may be replaced by machines, resulting in layoffs.

Mergers and acquisitions

When two companies merge, there is often overlap in their operations, leading to layoffs as the new company looks to streamline its workforce.

But it's worth noting that layoffs are not exclusive to the tech industry and can happen in any industry due to uncertainty in the market.

Will layoffs increase in 2024?

It is challenging to estimate the rise or fall of layoffs. The overall state of the economy, the health of certain industries, and the performance of individual companies will play a role in deciding the degree of layoffs in any given year.

But it is also seen that, in the first 15 days of this year, 91 organizations laid off over 24,000 tech workers, and over 1,000 corporations cut down more than 150,000 workers in 2022, according to an Economic Times article.

The COVID-19 pandemic caused a huge economic slowdown and forced several businesses to downsize their employees. However, some businesses rehired or expanded their personnel when the world began to recover.

So, given the current level of economic uncertainty, predicting how the situation will unfold is difficult.


Also, read: 4 Images That Show What Developers Think Of Layoffs In Tech


What types of companies are prone to tech layoffs?

2023 Round Up Of Layoffs In Big Tech

Tech layoffs can occur in organizations of all sizes and various areas.

Following are some examples of companies that have experienced tech layoffs in the past:

Large tech firms

Companies such as IBM, Microsoft, Twitter, Better.com, Alibaba, and HP have all experienced layoffs in recent years as part of restructuring initiatives or cost-cutting measures.

Market scenarios are still being determined after Elon Musk's decision to lay off employees. Along with tech giants, some smaller companies and startups have also been affected by layoffs.

Startups

Because they frequently work with limited resources, startups may be forced to lay off staff if they cannot get further funding or need to pivot due to market downfall.

Small and medium-sized businesses

Small and medium-sized businesses face layoffs due to high competition or if the products/services they offer are no longer in demand.

Companies in certain industries

Some sectors of the technological industry, such as the semiconductor industry or automotive industry, may be more prone to layoffs than others.

Companies that lean on government funding

Companies that rely significantly on government contracts may face layoffs if the government cuts technology spending or contracts are not renewed.

How to track tech layoffs?

You can’t stop tech company layoffs, but you should be keeping track of them. We, HR professionals and recruiters, can also lend a helping hand in these tough times by circulating “layoff lists” across social media sites like LinkedIn and Twitter to help people land jobs quicker. Firefish Software put together a master list of sources to find fresh talent during the layoff period.

Because not all layoffs are publicly disclosed, tracking tech industry layoffs can be challenging, and some may go undetected. There are several ways to keep track of tech industry layoffs:

Use tech layoffs tracker

Layoff trackers like thelayoff.com and layoffs.fyi provide up-to-date information on layoffs.

In addition, they aid in identifying trends in layoffs within the tech industry. It can reveal which industries are seeing the most layoffs and which companies are the most affected.

Companies can use layoff trackers as an early warning system and compare their performance to that of other companies in their field.

News articles

Because many news sites cover tech layoffs as they happen, keeping a watch on technology sector stories can provide insight into which organizations are laying off employees and how many individuals have been affected.

Social media

Organizations and employees frequently publish information about layoffs in tech on social media platforms; thus, monitoring companies' social media accounts or following key hashtags can provide real-time updates regarding layoffs.

Online forums and communities

There are online forums and communities dedicated to discussing tech industry news, and they can be an excellent source of layoff information.

Government reports

Government agencies such as the Bureau of Labor Statistics (BLS) publish data on layoffs and unemployment, which can provide a more comprehensive picture of the technology industry's status.

How do companies reduce tech layoffs?

Layoffs in tech are hard – for the employee who is losing their job, the recruiter or HR professional who is tasked with informing them, and the company itself. So, how can we aim to avoid layoffs? Here are some ways to minimize resorting to letting people go:

Salary reductions

Instead of laying off employees, businesses can lower the salaries or wages of all employees. It can be accomplished by instituting compensation cuts or salary freezes.

Implementing a hiring freeze

Businesses can halt employing new personnel to cut costs. It can be a short-term solution until the company's financial situation improves.


Also, read: What Recruiters Can Focus On During A Tech Hiring Freeze


Non-essential expense reduction

Businesses might search for ways to cut or remove non-essential expenses such as travel, training, and office expenses.

Reducing working hours

Companies can reduce employee working hours to save money, such as implementing a four-day workweek or a shorter workday.

These options may not always be viable and may have their problems, but before laying off, a company owes it to its people to consider every other alternative, and formulate the best solution.

Tech layoffs to bleed into this year

While we do not know whether this trend will continue or subside during 2023, we do know one thing. We have to be prepared for a wave of layoffs that is still yet to hit. As of last month, Layoffs.fyi had already tracked 170+ companies conducting 55,970 layoffs in 2023.

So recruiters, let’s join arms, distribute those layoff lists like there’s no tomorrow, and help all those in need of a job! :)

What is Headhunting In Recruitment?: Types & How Does It Work?

In today’s fast-paced world, recruiting talent has become increasingly complicated. Technological advancements, high workforce expectations and a highly competitive market have pushed recruitment agencies to adopt innovative strategies for recruiting various types of talent. This article aims to explore one such recruitment strategy – headhunting.

What is Headhunting in recruitment?

In headhunting, companies or recruitment agencies identify, engage and hire highly skilled professionals to fill top positions in the respective companies. It is different from the traditional process in which candidates looking for job opportunities approach companies or recruitment agencies. In headhunting, executive headhunters, as recruiters are referred to, approach prospective candidates with the hiring company’s requirements and wait for them to respond. Executive headhunters generally look for passive candidates, those who work at crucial positions and are not on the lookout for new work opportunities. Besides, executive headhunters focus on filling critical, senior-level positions indispensable to companies. Depending on the nature of the operation, headhunting has three types. They are described later in this article. Before we move on to understand the types of headhunting, here is how the traditional recruitment process and headhunting are different.

How do headhunting and traditional recruitment differ from each other?

Headhunting is a type of recruitment process in which top-level managers and executives in similar positions are hired. Since these professionals are not on the lookout for jobs, headhunters have to thoroughly understand the hiring companies’ requirements and study the work profiles of potential candidates before creating a list.

In the traditional approach, there is a long list of candidates applying for jobs online and offline. Candidates approach recruiters for jobs. Apart from this primary difference, there are other factors that define the difference between these two schools of recruitment.

AspectHeadhuntingTraditional RecruitmentCandidate TypePrimarily passive candidateActive job seekersApproachFocused on specific high-level rolesBroader; includes various levelsScopeproactive outreachReactive: candidates applyCostGenerally more expensive due to expertise requiredTypically lower costsControlManaged by headhuntersManaged internally by HR teams

All the above parameters will help you to understand how headhunting differs from traditional recruitment methods, better.

Types of headhunting in recruitment

Direct headhunting: In direct recruitment, hiring teams reach out to potential candidates through personal communication. Companies conduct direct headhunting in-house, without outsourcing the process to hiring recruitment agencies. Very few businesses conduct this type of recruitment for top jobs as it involves extensive screening across networks outside the company’s expanse.

Indirect headhunting: This method involves recruiters getting in touch with their prospective candidates through indirect modes of communication such as email and phone calls. Indirect headhunting is less intrusive and allows candidates to respond at their convenience.Third-party recruitment: Companies approach external recruitment agencies or executive headhunters to recruit highly skilled professionals for top positions. This method often leverages the company’s extensive contact network and expertise in niche industries.

How does headhunting work?

Finding highly skilled professionals to fill critical positions can be tricky if there is no system for it. Expert executive headhunters employ recruitment software to conduct headhunting efficiently as it facilitates a seamless recruitment process for executive headhunters. Most software is AI-powered and expedites processes like candidate sourcing, interactions with prospective professionals and upkeep of communication history. This makes the process of executive search in recruitment a little bit easier. Apart from using software to recruit executives, here are the various stages of finding high-calibre executives through headhunting.

Identifying the role

Once there is a vacancy for a top job, one of the top executives like a CEO, director or the head of the company, reach out to the concerned personnel with their requirements. Depending on how large a company is, they may choose to headhunt with the help of an external recruiting agency or conduct it in-house. Generally, the task is assigned to external recruitment agencies specializing in headhunting. Executive headhunters possess a database of highly qualified professionals who work in crucial positions in some of the best companies. This makes them the top choice of conglomerates looking to hire some of the best talents in the industry.

Defining the job

Once an executive headhunter or a recruiting agency is finalized, companies conduct meetings to discuss the nature of the role, how the company works, the management hierarchy among other important aspects of the job. Headhunters are expected to understand these points thoroughly and establish a clear understanding of their expectations and goals.

Candidate identification and sourcing

Headhunters analyse and understand the requirements of their clients and begin creating a pool of suitable candidates from their database. The professionals are shortlisted after conducting extensive research of job profiles, number of years of industry experience, professional networks and online platforms.

Approaching candidates

Once the potential candidates have been identified and shortlisted, headhunters move on to get in touch with them discreetly through various communication channels. As such candidates are already working at top level positions at other companies, executive headhunters have to be low-key while doing so.

Assessment and Evaluation

In this next step, extensive screening and evaluation of candidates is conducted to determine their suitability for the advertised position.

Interviews and negotiations

Compensation is a major topic of discussion among recruiters and prospective candidates. A lot of deliberation and negotiation goes on between the hiring organization and the selected executives which is facilitated by the headhunters.

Finalizing the hire

Things come to a close once the suitable candidates accept the job offer. On accepting the offer letter, headhunters help finalize the hiring process to ensure a smooth transition.

The steps listed above form the blueprint for a typical headhunting process. Headhunting has been crucial in helping companies hire the right people for crucial positions that come with great responsibility. However, all systems have a set of challenges no matter how perfect their working algorithm is. Here are a few challenges that talent acquisition agencies face while headhunting.

Common challenges in headhunting

Despite its advantages, headhunting also presents certain challenges:

Cost Implications: Engaging headhunters can be more expensive than traditional recruitment methods due to their specialized skills and services.

Time-Consuming Process: While headhunting can be efficient, finding the right candidate for senior positions may still take time due to thorough evaluation processes.

Market Competition: The competition for top talent is fierce; organizations must present compelling offers to attract passive candidates away from their current roles.

Although the above mentioned factors can pose challenges in the headhunting process, there are more upsides than there are downsides to it. Here is how headhunting has helped revolutionize the recruitment of high-profile candidates.

Advantages of Headhunting

Headhunting offers several advantages over traditional recruitment methods:

Access to Passive Candidates: By targeting individuals who are not actively seeking new employment, organisations can access a broader pool of highly skilled professionals.

Confidentiality: The discreet nature of headhunting protects both candidates’ current employment situations and the hiring organisation’s strategic interests.

Customized Search: Headhunters tailor their search based on the specific needs of the organization, ensuring a better fit between candidates and company culture.

Industry Expertise: Many headhunters specialise in particular sectors, providing valuable insights into market dynamics and candidate qualifications.

Conclusion

Although headhunting can be costly and time-consuming, it is one of the most effective ways of finding good candidates for top jobs. Executive headhunters face several challenges maintaining the g discreetness while getting in touch with prospective clients. As organizations navigate increasingly competitive markets, understanding the nuances of headhunting becomes vital for effective recruitment strategies. To keep up with the technological advancements, it is better to optimise your hiring process by employing online recruitment software like HackerEarth, which enables companies to conduct multiple interviews and evaluation tests online, thus improving candidate experience. By collaborating with skilled headhunters who possess industry expertise and insights into market trends, companies can enhance their chances of securing high-caliber professionals who drive success in their respective fields.

View all