Developer Insights

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

HackerEarth Introduces Full-Stack Assessments At Hire10(1) Conference

The new HackerEarth Assessments feature of full-stack assessments will facilitate both backend and frontend developer assessment for recruiters.



HackerEarth has just announced the addition of full-stack assessments to help recruiters efficiently evaluate the coding skills of full-stack developers. HackerEarth’s CEO, Sachin Gupta, made the announcement today at Hire10(1), HackerEarth’s flagship virtual conference to help recruiters and engineering leaders hire top developers and build great tech teams.



According to the 2020 HackerEarth Developer Survey, more developers — over 35% — have expertise in full-stack development than in any other category. Yet evaluating these skills is notoriously difficult because full-stack development spans across multiple skills and requires a high level of customization based on the specific technology stack that an organization uses. HackerEarth’s full-stack assessment solution is highly flexible and customizable, supports a large number of out-of-the-box tech stacks, while simultaneously allowing any custom stack to be installed in the development environment. These assessments also include a powerful browser-based IDE built on top of Theia editor, providing developers the same code writing experience in the browser as they would get on their own systems.



“Organizations are increasingly looking to recruit full-stack developers. In fact, recent data from a survey done by Indeed shows that the demand for full-stack developers in the U.S. increased by 206% between 2015-2018. However, finding a good full-stack developer is hard since the assessment process is notoriously difficult and can take hours, days, and even weeks” said HackerEarth CEO, Sachin Gupta. “We added this feature to simplify the process and are working to make it easy for recruiters to proctor over longer time periods and assess using various programming languages. Our goal is to enable recruiters to evaluate developer skills from early candidate screening to more in-depth assignments in the later stages of recruitment, as well as to provide the best performance and experience possible for full-stack candidates.”

Key Benefits of the HackerEarth Full-stack Assessments Include:

Fullstack Assessments
  • Flexibility: Can be used for full-stack, or for assessment of either frontend or backend skills independently
  • Breadth of Languages Supported: Includes Python, Django, Java (Spring), Node JS for backend, and React and Angular JS for frontend
  • Customizability: Recruiters can customize the development environment and the task based on their specific technology stack. Candidates can then build and run entire applications within the HackerEarth portal
  • Ease of Implementation: Gives full access to the HackerEarth library of 13,000+ questions which allows recruiters to quickly build out full-stack assessments or create custom questions as well
  • Automation: Fully automated backend assessment, with frontend coming soon

For a better review process, the product has a detailed report section with additional functions including:

Fullstack reporting
  • Real-time recording of actions taken while building the application in the form of log files which recruiters can download and review
  • A preview function to help recruiters and candidates check the build easily
  • Automated screenshots of the application built by the candidate so recruiters can quickly evaluate their progress

Features Coming Soon:

  • Automated code quality score
  • Fool-proof proctoring for longer-term assignments
  • Support for more languages and frameworks, including PHP and Ruby on Rails
  • Auto-evaluation for frontend
  • The full-stack infrastructure will also be used to create specialized assessments for roles like Cybersecurity engineer, Game developer, etc.
Learn more about HackerEarth’s Full-stack Assessments.

Making the Internet faster at Netflix

In our fourth episode of Breaking404, we caught up with Sergey Fedorov, Director of Engineering, Netflix to understand how one of the world’s biggest and most famous Over-The-Top (OTT) media service provider, Netflix, handles its content delivery and network acceleration to provide uninterrupted services to its users globally.

Subscribe:Spotify|iTunes|Stitcher|SoundCloud|TuneIn

Sachin: Hello everyone and welcome to the 04th episode of Breaking 404, a podcast by HackerEarth for all engineering enthusiasts and professionals to learn from top influencers in the tech world. This is your host Sachin and today I have with me Sergey Fedorov, The Director of Engineering at Netflix. As you all know, Netflix is a media services provider and a production company that most of us have been binge-watching content on for while now. Welcome, Sergey! We’re delighted to have you as a guest on our podcast today.

Sergey: Thanks for having me, Sachin!

Sachin: So to begin with, can you tell the audience a little bit about yourself, a quick introduction about what’s been your professional journey over the years?

Sergey: Yeah, sure. So originally I’m from Russia, from the city of Nizhny Novgorod, which is more of a province town, not very well known. And that’s where I got my education. I went to college from a very good, but also not very well known university and that’s where I had my first dream team back in 2009 when I was in third grade in college. I teamed up with my friends and some super-smart folks to compete in a competition by Microsoft, which is a kind of student contest where you go and create software products. In that year we were supposed to solve one of the big United Nations problems and what we did, we were building a system to monitor and contain the spread of pandemic diseases. Hopefully, that sounds familiar, but it’s what it was in 2009. And as a result, we had unexpected and very exciting success. We happen to take second place in the worldwide competition in the final in Egypt. And that was really exciting to be near the top amongst the 300,000 competing students. And it was really the first pivotal point in my career which really opened the world to me because the internship at Intel quickly followed and it was kind of the R & D scoped, focused on computer graphics and distributed computing. And a year after I was lucky to be one of the few students from Europe to fly, to Redmond, to be a summer intern at Microsoft. It followed with a full-time offer to relocate to the US upon graduation from college in 2011. At Microsoft, I worked in the Bing team helping to scale and optimize the developer ecosystem, particularly the massive continuous deployment and build system for the Bing product that Microsoft. That was a really exciting journey, but the relatively short one, because quickly after an unexpected, the referral happened to me with an invitation to interview for the content delivery team at Netflix, that was just kind of getting started and to help them build the platform and to link and services for the content delivery infrastructure. And quite frankly, I don’t expect that I’ll make it, but I couldn’t pass the opportunity at least to interview. But somehow I made it, very early in my career. I was 23 years old with just a few years of practical experience and it was quite stressful to join the company. I was on an H1B visa. I lacked confidence. I lacked a lot of, kind of relevant to and can experience in that area. Yet I gave it a shot, and I joined a team of world-renowned experts in internet delivery. And, um, I stayed there ever since. I will say that that decision and that risk that I took was the second big milestone in my career. Because from there it allowed me to grow extremely quickly and it allowed me to be truly on the frontier of technology and shape my mindset working for one of the top kinds of leading companies in the Silicon Valley, I’ve been here for about eight years. I initialized, I stayed on the platform and tooling side. I built a monitoring system, a number of data analysis tools. The overall mission of the team is to build the content delivery infrastructure, to support the streaming for Netflix. And over time, we added some extra services on top of pure video delivery. And a few years ago, that’s the group that I joined still staying within the same org, working on some of their extra advanced CDN like functionality, specifically developing some of the ways to accelerate the network interactions between clients and the server, uh, helping to better balance the network traffic, the traffic between clients and the multiple regions in the cloud. And I also worked a little bit on the public-facing tool. So I built the speed task called fast.com, which is one of the most popular internet testing services today powered by open connect CDN. And as of today, I’m a hands-on engineering leader. I don’t really manage the team. Instead, I work extremely cross-functionally with partners and folks across the Netflix engineering group. And I help to kind of drive major engineering initiatives in areas related to client-server network interactions. And I have to improve and evolve different bits and pieces of Netflix infrastructure stack.

Sachin: Thanks so much for that and it’s an amazing journey. You know, it’s really inspiring to see. Um, would it be fair to say that, you know, you kind of didn’t, it’s been serendipitous for you in some sense, did you plan to be here in the US and you know, be working in an organization like this or it all just happened back when in school, when you decided to participate in the Imagine cup challenge?

Sergey: Well, I wouldn’t say that I didn’t want to do that, but I definitely didn’t expect to, and I definitely didn’t expect to be in a place where I am today. I would say that my whole career was a very unexpected sequence of very fortunate events. I guess, in any case, I was sort of seeking those opportunities and I was not afraid to take a risk and jump on them.

Sachin: Yeah, that’s super inspiring for our audience and, like you correctly said, you got to seek those opportunities, and of course you need a little bit of luck, but if you’re willing to take those risks, doors do open. So, definitely very inspiring. Uh, so a fun question for you. What was the first programming language you, you ever recorded in and you still use that?

Sergey: Yeah, that’s a really interesting question. Um, the first language that I used was Pascal. And, uh, it was when I was 14 years old. So I started my journey with computers relatively late. And so it was kind of in the high school at this point. And the first lines of code that I wrote were actually on paper and I was attending The Sunday boot camp, led by one of the tutors who was preparing some of the folks to compete with ACM style competitions, where you compete on different algorithmic challenges. And he did it for free just for folks to come in. And someone mentioned that to me. I was like, Ooh, that’s interesting. Let me see what it’s about. And for the first few months, I was just doing things like discussing different bits and pieces about programming and all I had was a paper to write different things on. Later on, I of course had a computer and the first few years of Pascal was the primary entry for me to programming. And it was primarily around CLI and some of the algorithmic challenges. It’s only a couple of years ago when I discovered the ID and the graphic interfaces, and it really opened the world of what they could do. Uh, so yeah for me the first programming language is Pascal. And no, I don’t use it, but still have very warm memories of that because I think it’s a really, really good language to start with.

Sachin: Writing your first piece of code on paper. That’s an amazing thing. The folks who are getting into computer science today, they get all these IDEs, autocomplete, you know, all the infrastructure right upfront. Uh, but I think there is some merit in doing things the hard way. It prepares you for challenges and that’s my personal opinion.

Sergey: Yeah, I definitely agree with that. I’m not sure whether the fact that they had to go through that is an advantage or disadvantage for me, because I really had to understand the very basics and fundamentals. And I was super lucky with a tutor for that. He really didn’t go to the advanced concepts until I really nailed down the fundamentals. And I think having to really painfully go through that, if you’re kind of using a pen and sheets of paper, I think it really forces you to really get it.

Sachin: Right. Makes sense. So Netflix is one of the companies that has been growing massively over the last few years and acquiring millions of users. What are some of those key design and architecture philosophies that engineers at Netflix follow to handle such a scale in terms of network acceleration, as well as content delivery?

Sergey: Yeah, that’s an excellent question. In my case, as I mentioned, I’ve been here for quite a while and I had a lot of fun and enjoyed watching Netflix grow and be part of the amazing engineering teams behind it. But quite frankly, it’s really hard for me to summarize the base concept like use cases, there are so many different aspects of Netflix engineering and challenges, and that there are so many different, amazing things that have happened. So I’ll probably focus a little bit more on some of the bits and pieces that I had on the opportunity to touch. And for me, the big part of the success of growth was actually a step above the pure engineering architecture. It’s firstly rooted in the engineering culture because the first Netflix employees are great people. But second and most importantly, it really enables them to do the best work and gives them a lot of opportunities and freedom to do so. And with that empowerment and freedom to implement the best and to do the best work, I think the engineers are truly opening themselves up for the best possible solutions that really advance the whole architecture and the whole kind of service domain. On the technical side, in my experience, what I think was fundamental to effectively scale infrastructure is the balance that we have had between innovation and risk. And in our case, many fundamental components of our engineering infrastructure are designed to be extremely resilient to different failures and to reduce the blast radius, to contain the scope of different issues and errors. With that’s really embedded like this thinking about errors, thinking about failures, it’s really embedded in the mindset and that leads some of the solutions and some of the implementations to be really robust and really resilient to some of the huge challenges and lots of unexpected demands. And in that aspect is that many systems I designed and thought of to scale 10 X from the current state. So that’s often when we think about the design, we don’t think about today. We think about the 10 X scalability challenge, and that includes both architecture discussions and some of the practical things like performing the skill exercises constantly and stress testing our system, both existing and proposed solutions and constantly making sure that things can scale. So in case, we have unexpected growth, we have confidence that we can manage it. And I think as a result of that, we are not only getting an architecture, that’s stable and scalable. But we also get an architecture that’s safe to innovate on, because we can do the changes with more confidence that we can roll back things. We have confidence in our testing and tooling and with that confidence, I think it’s much as much easier to apply and do your best.

Sachin: Interesting. So you spoke about designing for innovation as well as being resilient and then kind of designing for a 10X scale in the very beginning. So typically, and this is my experience and I may be wrong here, but when we were younger in our journey as a software engineer, right, we tend to get biased towards building out the solution very quickly and, do not have that discipline to kind of think about the long term scale and all of those challenges, because that is very deliberately put that in place. Right. So, so has there, like, how did your journey kind of evolve in that? Are there any tools, techniques that you use to kind of force yourself to come up with the right architecture? Could you talk a little bit about that?

Sergey: Well, so I think you were what you touched upon a really great point, but it’s, I would say it’s a slightly different dimension, a bit more of a trade-off between the pace of innovation and sort of the technical debt, the quality of code, so to speak. And I think this is an extremely broad topic, uh, with where I would say their answer would really depend on their application domain. For example, I would give you one answer if you were working on some medical or military services, versus some ways like a social network, consumer and product entertainment sort of services because the risk of failure and the mistake is completely different in that case. And I think another factor comes from the understanding of the problem. There is, I think, a big difference in designing the system for the problem that you understand really well, and you have a pretty good idea that it’s there to stay for quite a while versus more of an exploration where you’re not exactly sure whether this would work or not. You are still trying to kind of get a hand at it. And, uh, quite often you start with a second, with a latter option, and that’s what made you start to do. And I would say that in that case, uh, in my personal experience, I think it’s much more productive to focus on the piece of innovation. And, uh, maybe in some cases build some of the technical debts, maybe in some cases to compromise some of the aspects of the best practices but being able to get things out and get some kind of bits and pieces really quickly and learn from it. And since you are relatively lightweight, it’s much easier to pivot and change direction. At the same time, it doesn’t mean that we all have to be Cowboys and break things here and there. There is a balanced approach. You can still invest in the core principles and the core architecture that allows all those things innovations to happen safely. And I think at Netflix, that’s what really we excelled at. We have some of the core components, some of the core tools that are available for most of the engineers. That’s allowed to make things, uh, and innovate safely while not being overly burdened by some of the hard rules and, uh, some of the complicated principles and gain that experience. And I would say this is sort of a natural process. You have something that’s done relatively quickly. Then you were at this kind of crossroads. Whether now you know, this is a real thing and you’ll have to scale it. And then you would likely apply a different way of thinking or maybe it doesn’t work and well you save a bunch of work by not overcommitting to something really big before confirming that this is useful. And at this point when you were on the road to actually build it for the long term, it might be the proper solution to rebuild what you’ve designed in the past. And it might sound like you were wasting a lot of time. Like you’re doing the double effort. But the way I see it, there’s actually, you’ve saved a lot of time because you were able to relatively cheaply test a bunch of lightweight solutions. You got the confidence, what really works. And now you’re only investing a lot of resources on building the long term for the one thing, and essentially you’ve saved all the time by not doing that for all other ideas that you’ve had. Um, I have them all, it’s sort of a 20, 80 rule that takes 20% of the time to build a working prototype and it takes 80% of the time to productize that and make it resilient and scalable. Um, in many aspects of innovation, it makes sense to start with the 20 and only go for the 80% over time. Yeah, but as I mentioned, it doesn’t mean that everything has to be all or nothing. There are still major principles and it definitely makes sense, especially as you get larger to invest in the main building blocks to enable those things to happen safely. There are always some of the quantum principles that are cheaper and easier to follow in all scenarios. I think one of my favorite books that I was lucky to read early on is the Code Complete by Steve McConnell, which goes into the lots of fundamentals about just writing good and maintainable code, which in most cases doesn’t take more time to write. I just need to follow some relatively simple guidelines.

Sachin: Gotcha. That’s a very interesting perspective. If I were to summarize it, you were saying that, uh, architecture design is context-dependent. You got to know what the problem is and what you’re optimizing for. And sometimes you’ll go for something lightweight and then optimize it later on because the speed of innovation is also important, but there are always certain principles that one can use without really increasing the development time, certain strong arteries that can help in building robust code. So that’s, you know, definitely interesting. Uh, another fun question. Do you get time to watch any shows, movies on Netflix, and if so, which one’s your personal favorite?

Sergey: Yeah. Well, while often I don’t have a ton of time to watch I definitely love to have an opportunity to relax and enjoy a good show and Netflix is naturally my go-to place for doing that. And, I’m in a losing battle to keep up with all the great shows that I would like to watch. And, um, it’s quite hard for me to choose one favorite. So I think I’ll cheat and I’ll choose a few instead of just one. So I hope you’re fine with that. I think one thing is I’m a fan of sci-fi as a genre and I really enjoyed Altered Carbon, especially the first season. And over-time I’m also learning that I’m affectionately a fan of bigger shows that I have no idea about. And the one title that I really enjoyed was ‘The End of the F***in world’, which is a dark comedy-drama. It follows the adventures of two teenagers. It’s a really kind of unique piece of content and I truly enjoyed every episode of it. I’m really glad that as a company, we really invest in more and more international content, not just coming from the American or the British world. And the latest favorite for me was ‘The Unorthodox’, which is a German American show with most of the dialogues actually in Yiddish, which is a part of the Orthodox Jewish culture. I enjoyed both the personal story and I also learned a lot about it because I had no idea about this part of the cultural experience for some of the folks. I was both enjoying the ways, done the story behind it, and it had a huge educational component.

Sachin: Thanks for sharing that. So moving back to the technical discussion. So you worked at multiple organizations, you know, Intel, Microsoft, while having the bulk of your time you have spent at Netflix. If you were to look back and think about one or two major technical challenges that you faced and is there something that you would like to talk about and more so along the line of how did you overcome it?

Sergey: Sure. So I think I’ll probably choose one of my favorites. And I think that’s the biggest challenge that I can recall probably by far. And that was my first major project when I joined Netflix. So the task was to build the monitoring seal system for the new CDN infrastructure. And, that was really quick as the task quickly forwards after I joined the CDN group at Netflix. As I mentioned, I was relatively early in my career. I was relatively inexperienced. I know very little about this domain and there’s a huge infrastructure that’s about to like, is being built and we are migrating a lot of video traffic on it. And this is a huge amount of traffic. At that point, Netflix was about one-third of all downstream traffic in North America. So like a third of the internet is there. And here I am like a new employee, that’s not like, Hey, let’s go see some that will tell us how we do like that. We’ll monitor the main state of the system. Like you will, you’ll have to design the main metrics. And really design the system end-to-end on both the backend and the front end, that of UI. And in the true Netflix culture was given the full authority to make its own tactical decisions on product design and implementation. So it was just a full-on like, here’s the problem context, please go and figure it out and we are sure you’re, you’re going to agree. And The biggest challenge of all of that is that many aspects of the system were new and quite unique. And even the folks who were working on this history for a long time, they were quite upfront that we are learning as we go in many ways. So we cannot really give you the precise technical requirements, but we actually wanted to look at. And overall we wanted to keep the whole system and the approach to the monitoring as hands-off as possible, just to make sure that the system reflects some of the architectural components, which reflect some of those principles like a self-healing system that’s resilient to individual failures. So I had to fully understand the engineering solution. I had to model it and there, in terms of the services and the kind of data layer. I had to look at and partner really closely with the operations team to learn a lot about how the system performs, what metrics we should look at, what’s noisy, what’s not. And it’s been quite a ride but especially remembering that was an extremely fun challenge. And I think some of the things that were fun like: a) That I was very unexpected, given the huge responsibility on a pretty critical piece of Netflix infrastructure stack and I was given full control of what I’m using for that. And I could either choose something that I’m comfortable with or something that’s completely new to me. There were really fun interactions with various folks, even though some of my teammates were not necessarily experts in building cloud services or building UIs. There were many other folks at the company who were extremely open and helpful to get me up to speed. I think some of the things that have allowed me to where success is that system is still used today with lots of components still the same as they were built many years ago. I think I made the right decision to focus on very quick iteration. As a matter of fact, the first version of the system fully ready for production and actually used by the on-call by the operations team was done in about two months. And that with me learning how to deploy ADA services in the cloud. I chose Python as a framework, and I knew very little about it before I learned the new UI framework and kind of built the front end in the browser for it. But focusing on the initial core critical components and getting something working was a huge help because it allowed me to build a full feedback loop with the users and started to start learning about the system. And then that calibration of the stakeholders allowed it to iteratively evolve it over time. And even though I didn’t know a lot of different things early on, I was extremely flexible and adaptable. I think some of the key things that were critical for my success to get it done is my ability to wear my mistakes, to be very upfront about mistakes, and actively seek help. And I think that’s one thing that I often notice, different people are not doing for various reasons. They think that it’s not the key to make mistakes, or they are somewhat unskilled or unqualified if they ask for help. For me, it’s been always the opposite. No one, nobody knows everything. Nobody’s perfect. Everyone, everyone makes mistakes. And, uh, the sooner you realize it and the more upfront and open you are around those aspects. The better you’ll be able to find the ideal solution and the faster you’ll be able to learn over time.

Sachin: Right. So it would have been a lot of confidence for you back in that time. Like you said, you were early in your career and the organization just said, Hey, this is your project. You have complete authority to just go out and do. And when we know, we’re sure you do the right thing, it must have also given you a lot of confidence, right?

Sergey: Well, quite honestly, initially it didn’t. Initially, it freaked me out because I was especially after companies like Intel or Microsoft, where their approach is very different. And I only had a few years of experience and I was not a well-known expert. That was very unusual. It was very scary. I would say the confidence really came months later when I was starting to see that the key is something that’s been built, that’s been used, I’m getting good feedback. And people are thanking me for working on that. They are giving some constructive feedback. They make suggestions, and I’m becoming the person who actually knows how to do it. Then in some of the domains, I’m becoming the most knowledgeable person, which is natural when you’ve worked on that. I would say confidence really came at this point, which was many months after that I would say probably a year or so. Maybe even after that.

Sachin: Got it. That makes sense. So, moving on to the next question, do you believe engineers should be specialists or generalists and how does this really impact career growth in the mid to long term?

Sergey: Yeah, that’s a great question. And personally, I don’t think there is one right style. To me, it’s like comparing what is more important, front end or backend. I think any effective team requires both types of personalities. And for nearly any major project, you need to rely on those because if you think about it, if you have a team of only specialists, you’ll have really well done individual pieces of the system, but it will be really hard to connect them together. Similarly, if you only have generalists, you may have liked a lot of breaths, but it would be really hard to actually build truly innovative aspects of the products because that’s the point of focusing on the one area that you have to give a compromise and not know something else. I think ultimately for effective teams, you need both times and you really need to have effective and efficient communication between both groups of them. You need them to be able to work together as a very well-aligned team. Uh, so yeah, I think for me personally, like what type of engineer to be is more of a personal choice. And also in my experience, there have been many opportunities to change the preference. You don’t have to necessarily pick ones and stick to that. You can mix it as you can go into one area or another. In my case I’ve been a specialist at some point and actually in the early stages of my career, I was probably the most specialized. When I was at Intel, it was a heavily dedicated area focused on computer graphics. I was optimizing some of the retracing algorithms and methodologies, what specific types of the network of Intel hardware. So it was all of low-level C, assembly, and some of the specific Intel instructions for, to get the most out of it. At Microsoft, I worked on search and some of the developer experience, then I switched to network and networking. So it’s, it’s sort of a mix. So I think I was becoming more of a generalist over time. On the tactical stuff, but still, I’m specializing in which area on the larger area. But this is also a personal choice and the industry and the technology is moving so fast that even if you were the expert in one area, very specialized today, in fact, years, you might, if you’re not keeping up, you might be off-site or that area is not everything. And you don’t have to stay there. You may find the passion somewhere else and switch to it. Or you can always stay as a generalist and just explore and move alongside technology growth.

Sachin: Yeah. So if I, if I were to summarize that, uh, you’re saying teams eventually need both kinds of engineers, and it really boils down to a personal choice, whether you want to be a specialist or a generalist, but, you know, given the current pace at which like you said, technology is evolving, it’s really hard to just be narrow jacketed into one thing, you know, because things around you would just constantly change and then you’ll have to adapt to them.

Sergey: Well, I think it’s on the latter point, I would say, I would say really depends. There are some of the areas that remain relevant, uh, for quite a while, for example, talking about the networking area, we’re still using TCP and that’s the technology from the 1980s. And there is still a lot of really interesting research and developments going on. And if anything, in recent times, the pace of development has accelerated. And yet, someone who specialized in that in the nineties would be still very relevant today. So in some of the areas you can still, you can specialize and you’ll be growing your influence. You’re growing your impact over time, but there’s no guarantee and it’s really hard to predict those areas. So I think, well, if you’re really passionate about it, it makes sense to stay. But I would say you should always be ready to pivot go and dig into something else.

Sachin: That makes sense. So another fun question, which software framework or tool do you admire the most?

Sergey: I think my answer will be probably quite boring at that. I’m pragmatic, I don’t have a favorite intentionally. I tend to follow the principle that there is always the right tool for the job. And as that principal and trying to avoid any sort of absolute beliefs or absolute favorites. Having said that, uh, the very few frameworks that I personally like and they’ve helped me quite a bit. I like Python quite a bit for its simplicity, its flexibility. From personal experience, it’s one language I was able to deliver a fully usable work in projects that are being consistently used for several years after in just two weeks. And before those two weeks, I barely knew Python. So I think that shows the extreme power of the language, how easy it is to pick up and do something actually practically useful. Related to Python, I like pandas quite a bit, which is a statistical library with some of the ways to do time serious or data frame analysis. From the network world, I should mention Wireshark, which is a general tool and it’s fantastic and definitely go-to for me to understand all that happens on the network communications at an insane level of detail. In terms of overall impact, I should mention the Hive, which is a big data framework. While it’s becoming sort of obsolete technology right now replaced by Spark and all of the following innovations. I think it’s really created a revolution in many ways. In its own time, creating, making it possible to access enormous amounts of data, very easily using the very familiar SQL like language. And for me, I happen to use it around the time and it really had a massive impact on a number of insights into things I was able to do.

Sachin: Interesting. I agree with you on the Python bit. I myself learned Python very quickly and saw the power of the framework and the versatility in terms of the things that allow you to do, like there’s hardly any industry domain, where, where you can’t use Python to very quickly prototype. Right? So in that sense, it’s a very powerful and versatile framework. Thanks for that. Let’s move on to the next one. You know, given the current scenario around COVID-19 everybody working from home, what’s your take on remote engineering teams? Personally, what do you feel about remote work and you mentioned that your work involves a lot of cross-team collaboration? So how has that been impacted positively or negatively in recent months?

Sergey: Yeah, so I think for the first question for remote work in general, the group that I’m in the content delivery group at Netflix, we were remote from the ground up. So our teammates, they are all scattered around the globe all the way from Latin America, to the US, to Europe, to Asia and all the way to Australia. In terms of working remotely we’ve figured out the way to do it very efficiently, but what’s challenging is that now we are a hundred percent remote because what you’ve done in the past, like some of the folks that are in the office, like in Los Gatos in California, some of the folks that are working from home and we effectively collaborate with each other, but every quarter we will do what we call the group of sites where everyone would get together in the same place. We will have a number of meetings and discussions, both formal and informal, where you’ll be able to sort of put the actual person to their image that you see on the screen. And you’ll be able to really know those persons, those folks, your teammates outside of their direct work domain. In my experience, that’s hugely impactful in terms of affecting your future interactions and building a relationship and working together as efficiently as possible. And with today’s COVID-19 world, we are losing that. So we are 100% remote and even though it hasn’t been a hugely long period of time, based on some estimates, it might take a while for us to work the way. And, it’s a challenge not to have some of that context and to lose some of this nonverbal thesis of communication. To your question, it’s also much harder to build new relationships. I would say it’s still possible to sustain some of the relationships that you’ve built from the past based on previous work together, previous interactions. But when you have to meet a new partner or when there is a new person joining the team, it’s extremely hard to find the common commonalities or find the same language, when you only have a chance to interact via chat or VC. I would say we are definitely trying different things to fix that. We haven’t found the perfect solution. We hope to find it. I would say we also call that you won’t have to find it for the longterm. Hopefully, the COVID-19 situation will be addressed as quickly as possible. But yeah, that’s the very few things that I would say that’s becoming even more critical. First is extremely clear and efficient communication. It becomes paramount and the sharing of the context, and especially from the leadership side, it becomes extremely important to make sure that everyone is on the same page. And that you really need to double down on all of the context sharing in that sense. And, uh, in terms of the partners, I think it’s extremely important to make sure that folks feel safe when they work that way. Because as part of not having a chance to talk face to face, it’s a great environment too, uh, for some sort of or kind of fear and paranoia to build up. Um, it’s harder to make sure like how you’re doing, how things are going, especially when there’s lots of stress happening on the personal side as well and there is lots of research that shows that we are not productive when we are experiencing high levels of stress. And, uh, I would say that’s on the individual side. It’s really critical to make sure that both yourself and all the partners around you are feeling safe and in the right state of mind primarily. And then it comes down to where something that’s really difficult, which is building trust between each other to do the best work. Even in the case, when you are very far away from each other, you really need to make sure that once you share it’s all the context about the problems, about the solutions, about the ideas. You have the full trust in others to do the best work to address some of the things and help you with some of the things or ask you for help as well.

Sachin: Got it. That makes sense. I completely agree with you on the fact that. Having a shared conversation in person is definitely different from having it over video and the kind of relationships that get built subconsciously is very, very hard to replicate that on video and, and I’m with you that hopefully, we can safely return back to work at some point in time sooner, rather than later.

Sergey: In the meantime, but one sort of thing that we are doing is that we are making sure that we still communicate informally. One thing that we do as a team, we have three times a week, we have a virtual breakfast. If someone can’t make it that’s okay. But otherwise, folks just have an informal breakfast together. And we tried to talk about things unrelated to work, uh, just any subject, basically something that you would have as a conversation if you went for the team lunch outside.

Sachin: That’s interesting. And is that working out well, like, do you see people interacting and joining these discussions?

Sergey: In my opinion, yes. I think personally I feel much more connected after those things. When I have an opportunity to hear and see folks discussing aspects outside of the specific tactical work domain. I think it’s useful for others. It’s good for morality. And I’m seeing that many other teams experimenting with different ideas along the same lines.

Sachin: Nice. So, onto the next question, you know the tech interview process is talked about a lot. People have their different opinions. What’s your take on given the current norms around tech assessments and interviews? What do you think is unoptimized today or what in your opinion should be changed?

Sergey: Cool. Would you mind clarifying, are you asking specifically about the current, highly remote situation or interviewing in general?

Sachin: Tech interviewing in general, the process that, you know, that is there. I’m assuming Netflix, other than the cultural aspects, maybe from a talking perspective and your previous organizations have had similar methods or processes. So do you think there’s something that we could do better? Not in the context of COVID-19 per se, but in general.

Sergey: All right, got it. I think it’s generally, I think there are lots of challenges with a typical interview process. And if you think about it, the typical interview experience where we have someone coming in for 30-40 minutes, solving some of the specific problems on the whiteboard, or sometimes on the shared screen, it’s not exactly what we experience in the day to day life. Quite often the problems are not very well defined, but you very rarely have specific constraints on time to solve it. Most of the time or I hope almost all of the time, there is much less stress in the typical work environment and you’re relating the person to something that they might not have the subtle experience in the workplace. At Netflix, many teams do try different – different approaches. We don’t have a single right way that everyone has to follow. Depending on the team, depending on the application domain, often depending on the candidate, folks will try to adjust the interview process. In our case, what we have tried and what we genuinely try to do, we’re avoiding very typical whiteboard questions. We try to focus on some of the problems that are much closer to real life. We try to lean on some of the homework, take-home assessments if possible. If the candidate has time to perform that and a general, I think this gives a much better read of the candidate skills because they can take it in the environment that they’re used to. There is no stress. There is not someone looking over the shoulder. And you can assess a much broader range of skills, not just a specific, like, I know how to solve it the way I don’t know how to solve it, but how do you write code? How do you document that? How do you structure it? And in some cases like even how do you deploy it? And those operational aspects of coding is a big part of engineering life, which are extremely important to assess as well. And I would say generally it’s a huge benefit if a candidate has something to share in the open-source and the open environment. If they have a project that someone can just follow or can take a look at the code, I would say that’s one of the best assessments of the skills it has just working, that’s been used, and that has been produced. It still doesn’t cover all aspects of it. It’s really hard to assess the qualities like teamwork or some of the compatibilities with the teammates. Um, those areas tend to be quite freaky. Um, and honestly, I don’t think I have any ideal solutions for that other than to make sure that as many partners for the new hire as possible are actively participating in the interview process. They have the ability to chat a little bit more and get an idea of whether they can work with a specific person and achieve strategies to do that depending on the team size or particular situation.

Sachin: Got it. So if I were to summarize this, if the interviewing process can be as much as possible, close to the actual work that you’ll be doing, while eliminating or reducing the stress that one goes through in the interview process, that should bring out a more fair assessment of the candidate.

Sergey: I would say, yeah, at least that’s the general strategy that in my experience, in the interview processes, I tend to follow.

Sachin: Interesting. So, another fun question, if not engineering, what alternate profession you would have seen yourself excel in?

Sergey: I would say it really depends on the time when you would ask me. I happen to get excited very easily and my immediate passions change quite frequently. As of recently, I would say I could easily find myself having a microbrewery or running like a barbecue-style restaurant. So those are the two things that I found interesting and I’m doing quite consistently for the last few years. I homebrew in my garage. I also have a few kegs of homebrew on top. And I have three grills in my backyard and those things complement each other very nicely and they bring lots of joy to myself and my friends as well.

Sachin: That’s really nice to know that you have a home brewery and you said you’ve been doing it for two years now.

Sergey: Uh, well, I would say more about five years.

Sachin: That’s an interesting hobby. Uh, so, you know, with that we are almost towards the end of our podcast. The final question today: So if there was like one tip that you could give to your peers, people who are at a similar role and even to those people who want to step up and, you know, come to a role where you are today, what would that be?

Sergey: I think I would respond with sort of a catchy phrase from our Netflix culture deck. And I think that defines the leadership style that the company tends to follow and that I personally strive for, which is leading with context and not control. And what that means is that as a leader, learning to gather, summarize, and effectively communicate the most critical goals and challenges that the business, you, your group faces and effectively share it with the team but trust the individual contributors and your partners to find the most optimal solution and execute it and not trying to do both at the same time, which is really hard to do it, but that’s, that’s what often happens. Because I think that empowering the folks with the proper knowledge and the kind of context around the problem, encourages folks to fully own it and better understand it and they become much more committed to that. And that has a much higher chance to provide the best optimal solution versus the situation when someone just tells you what to do like ABC. And that you’ll get more commitments. I think it inspires folks to grow much more. And I think overall it makes the person who is able to foster such an environment a much better leader, which is also extremely challenging to do. You’ve asked me for advice like for the managers, directors. I’m not sure I’m qualified to give that advice. Uh, it’s more of some things that I’m working on to prove myself and, as someone who is relatively new to their engineering leadership role, I’m finding lots of challenges and struggles, and also those things where you feel like, uh, you might know various aspects of the solution, but you don’t really have to be actively involved in every bits and piece of it and balancing those things is a huge challenge. And personally, as I progress on those, I see that I’m becoming more efficient and more useful for the group and for the company. And I think it’s a kind of ideal and useful goal to live by.

Sachin: So it’s more about empowering people so that they can find their own solutions. And then certain times you may even have the right solution in your hand, but you don’t want to do it because you want the people to fight their own battles. And maybe they come up with something completely different that you might not have imagined. So fostering that innovation is important.

Sergey: Yeah. I would say empowering with the context around the solution and empowering down with the trust for them to execute on it and fully own the implementation.

Sachin: Makes so much sense. And I think you’ve gone through the same in your journey at Netflix. From the early days, you got the context and you got full control.

Sergey: Absolutely. Yes, I experienced that and the full power of it as an individual contributor. And now I’m actively trying to get better at doing that for others as well.

Sachin: Yep. That makes sense. Sergey, it was a pleasure having you today as part of this episode, I really appreciate you taking your time. It was informative and insightful, and I definitely enjoyed listening. I hope our listeners also have a great time listening to you.

Sergey: Thanks a lot, Sachin! session. It’s been a pleasure to have a chance to share my story.

Sachin: Thank you. So, this brings us to the end of today’s episode of Breaking 404. Stay tuned for more such awesome enlightening episodes. Don’t forget to subscribe to our channel ‘Breaking 404 by HackerEarth’ on Itunes, Spotify, Google Podcasts, SoundCloud and TuneIn. This is Sachin, your host signing off until next time. Thank you so much, everyone!

About Sergey Fedorov
Sergey Fedorov is a hands-on engineering leader at Netflix. After working on computer graphics at Intel, and developer tools at Microsoft, he was an early engineer in the Open Connect — team that runs Netflix’s content delivery infrastructure delivering 13% of the world Internet traffic. Sergey spent years building monitoring and data analysis systems for video streaming and now focuses on improving interactive client-server communications to achieve better performance, reliability, and control over Netflix network traffic. He is also the author and maintainer of FAST.com — one of the most popular Internet speed tests. Sergey is a strong advocate of an observable approach to engineering and making data-driven decisions to improve and evolve end-to-end system architectures.

Sergey holds a BS and MS degrees from the Nizhny Novgorod State University in Russia.

Finding actionable signals in loosely controlled environments is what keeps Sergey awake, much better than caffeine. This might also explain why outside of work he can be seen playing ice hockey, brewing beer, or exploring exotic travel destinations (which are lately much closer to his home in Los Gatos, California, but nevertheless just as adventurous).

Links:
Twitter:@sfedov
Website:sfedov.com

The most popular data structures for coding interviews

As a beginner in programming, you may be able to work on your projects confidently. However, proving your worth in an interview by showcasing impeccable programming skills may be challenging.

Apart from the pressure that you must feel when your employment depends on a 45-minute talk, there’s one more thing that makes beginner programmers uneasy. You can’t look for answers like you’d typically do if you’re at loss when solving a programming problem.

While you can think your way through a difficult code implementation question, when it comes to data structures, the only thing that’s going to save you is knowledge. Here are the 6 most popular data structures that will help you ace your next coding interview.

Arrays

An array is one of the most basic data structures. Heaps, linked lists, and others are formed based on arrays. Hence, knowing everything you can about arrays is crucial to let your employers know you’re good at data management.

Most interviews would start by asking basic questions. You may need to explain how arrays work and how implementing arrays would work in different languages. You may also need to provide a couple of examples of languages with zero and 1-based indexing. Most popular languages today are zero-based, while some like Cobol and Fortran are 1-based.

Now, when you’re done with the basic questions, you’ll have to answer something more advanced. Typically, you’ll need to provide an answer to a practical problem and write some code to execute your solution.

A good example of this would be finding the second largest number in the array or deleting duplicate entries.

Apart from the duplicate entry questions, there’s another one that often appears on data structure interviews. This type of question heavily relies on maths, like finding the longest consecutive sequence of numbers in an array or a subarray with the largest sum. You’ll need to work on your math skills to answer any of these.

Stacks and queues

Both stack and queue are linear data structures, but the major difference between them is that stack uses the Last In, First Out method while queue uses the First In, First Out method. Essentially, a stack is a data structure where new elements are put on top and are normally retrieved from the top of the list, and a queue is a structure where new elements are placed in the bottom and are retrieved from the top as well.

Apart from talking about the implementation of these two data structures in practice, you will have to answer questions about implementing one as the other. That is, the interviewer may ask how you would implement a queue using a stack or vice versa.

Linked list

Linked lists are the basis for implementing queues and stacks, and are quite crucial for creating graphs. In this structure, elements of the array are interlinked instead of being indexed as in an array. This means you do not need to re-declare memory if an array grows too big as it doesn’t have to be close to each other to work.

This data structure is a great solution when you need to delete or insert items into the list constantly, and you aren’t strained in terms of memory usage. Apart from explaining these differences from the arrays, there’s one question that most interviews that bring up linked lists will mention—the loops.

When you insert or delete an element from the list, you need to rearrange pointers, as there may be a loop in there that breaks the code. Hence, finding and eliminating one is one of the most common linked list questions.

You may also have to find solutions to problems like finding and/or deleting certain nodes of the linked list, flattening and sorting lists, and merging sorting lists. Explaining why merge sort is better than quicksort for linked lists may also appear on the list of questions.

Hash table

Hash tables use a hashing algorithm to assign keys to index values, making an array effectively a two-column table where you can’t choose the value of the first column but can map it with a function itself. The easiest way to imagine a hash table is to assign an index number from 0 to 25 to all letters of the alphabet and then analyze how many times each letter appears in a certain word.

But that’s an easy example. Let’s say a hash table has to present data on response times of your VPN servers in Australia in each Australian town. With so many values to go through the hash function, you’re definitely going to have values that yield identical keys. That’s called hash collision, and it’s one of the major questions on interviews that deal with data structures.

There’s more than one way of solving this problem, and you need to know at least a couple of them and how they would differ. Separate chaining, for instance, is easier to implement than open addressing, but open addressing doesn’t take up as much memory in the end.

Apart from that, you will have to answer some basic hash table questions like finding missing elements and solve maths-related problems like finding a pair with a given sum. Also, expect to hear a question or two about the perfect hash function.

Trees

Probably the biggest set of questions you’ll have to answer when it comes to trees is about typology. While a tree data structure is a rather simple structure with a parent node linking to zero or more child nodes, there are so many subtypes that you can spend half an hour just talking about them.

While there are plenty of tree-like structures, you will be mostly talking about binary trees, BSTs, N-ary trees, AVL trees, as well as some other self-balancing trees and Heap structures.

After you’re done explaining the differences between these types of data structures, you’ll be mostly down to questions that deal with either navigating trees or implementing them in real-life situations.

Examples of the first type of questions would be calculating the height of a tree, transforming binary trees to perfect binary trees, or truncating a given tree to remove that lie on a certain path.

Graphs

A graph is a data structure where a set of nodes is connected with edges. As simple as this sounds, graphs are used everywhere, from GPS-based applications to Facebook. As graphs have a multi-faceted use potential, you may encounter a lot of questions about this data structure during an interview.

One of the easiest questions about graphs you can encounter is detecting and dealing with cycles. Another one deals with the minimum number of steps needed to perform a transformation or an operation.

A huge deal of graph questions is going to be about navigating the network of nodes and edges. You’ll need to explain what topological sorting is to your interviewer and find solutions to problems like finding the shortest path from one node to another in a given graph. You may also need to find the longest path in a DAG, clone a DAG, or calculate the maximum number of edges you can add to one for it to remain acyclic.

Some of the harder problems you may encounter during the interview include the traveling salesman problem, the vertex cover problem, or problems related to the Erdos Renyl model or clustering coefficient.

However, these are higher-tier questions and you may not need to ace them to pass an interview as a beginner in programming.

Excel at your next interview

Learning every possible question about data structures for the interview may be frustrating if you’re just cramming the information. If you want to succeed at interviews consistently, you need to practice and improve your data structure skills.

Work on pet projects to not just learn the typology of data structures but understand how they are used and what are the benefits of one or another structure. If that’s not an option for you, find common data science problems that you can solve and practice that way.

However, that’s going to prepare you for working with data. The only way you can prepare yourself for a data structure interview is by going through many interviews. Take part in mock interviews to polish your skills and excel at the next real interview you schedule.

Managing Distributed Systems and Engineers with Johan Andersen, Engineering Director, Citadel

In our second episode of Breaking 404, we caught up with Johan Andersen, Engineering Director, Citadel (Former Google SRE Manager) to understand the best practices of managing distributed systems as well as distributed systems engineers.

Subscribe: Spotify | iTunes | Stitcher | SoundCloud | TuneIn

Arbaz: Hello everyone and welcome to the second episode of Breaking 404 by HackerEarth, a podcast for all engineering enthusiasts, professionals, and leaders to learn from top influencers in the engineering and technology industry. This is your host Arbaz and today I have with me Johan Andersen, an ex-Googler (or Xoogler as they call it) and currently the Director of Engineering at Citadel, a global financial institution headquartered in Chicago, United States, with offices throughout North America, Asia, and Europe.

Johan: Hey Arbaz! I’m glad to be here. Thanks for inviting me.

Arbaz: So let’s get this episode up and running by giving our audience a little sneak-peak into your professional journey. So what has your professional journey been like?

Johan: Varied. I started as a systems and networks engineer in academia, worked at university for ~5 years trying to build cheap versions of products that were too expensive to buy. I moved from there into finance, worked as an IT security engineer at a major investment bank. I learned a lot about large systems and how to work effectively across teams, as security was supposed to be a part of any large project being developed at the bank. Switched to Google around 2009, and stayed there for 10 years working a wide variety of applications and infrastructure projects. I learned a lot about SRE best practices and scaling things both for traffic and for an operational load. Last year I moved to Citadel to help drive the SRE team here and spread some of that culture.

Arbaz: Now that our audience knows you much better, it’s time to get into the technicalities. You have previously been a Senior Engineering Manager at a tech giant, Google and now you are with Citadel, a top company in the financial space. What was the biggest challenge for you during this transition? As in how different has your experience been working in the engineering teams of two different industries (Tech and FinTech)?

Johan: The major change I noticed was more related to the relative sizes of the two companies. When I left Google, there were roughly 100x as many full-time engineers as there are at Citadel. This means that it's much faster to get effective changes rolled out, but that there's less pre-built infrastructure for teams to leverage. So more work is spent on establishing best practices, but also it's easier to get consensus on those practices and get them into production. Another change was the difference in the regulatory climate between the two. Google had lots of regulations on safeguarding user privacy and data, but fewer concerns around things retaining communications and desktop technology. I really miss Google Docs.

Arbaz: Well, Google Docs is very close to everyone using the GSuite globally, so we can totally understand your pain here. Moving on, it’s said that as one grows as a professional they tend to develop a greater fear of things going wrong. So what is the biggest fear that you have, being the Director (Engineering) at Citadel?

Johan: My biggest fears are not really Citadel specific; anyone building an engineering organization today has to think about them. One is a competition for talent: strong engineers have never been in more demand than they are today. One is keeping up with a changing ecosystem. SRE in particular, being partnered with multiple engineering teams, really ends up having to have a breadth-first approach to learning, and ends up being a conduit for best practices throughout the organization. Finally, and somewhat topical, is preparing for the unexpected. How well have you load tested the services you use to support remote workers? With the recent news, a number of "baseline assumptions" around both technology and support models are being tested.

Arbaz: Very well said, Johan. All the 3 points here are bang on point and very relatable for all those working in engineering teams globally. And as you rightly pointed out, the competition for talent is fierce and it’s really important for all companies to build great engineering teams. We, at HackerEarth, are proud to help companies in getting top technical talent. Just deviating a little from your professional life and getting to know you more as a person, what would be your favorite leisure-time activity that you love to do when not working?

Johan: I read a lot of science fiction. I play some video games. I like to sail, but don't get a chance very often! And I like to bicycle around New York City.

Arbaz: That’s really interesting. A mix of reading, playing video games and sailing is a pretty unique combination. I believe having a hobby is much needed for everyone to keep calm and motivated. Now that we are talking about hobbies and interests, we often see engineers (at least I do at HackerEarth) lost in their laptop/computer screens, writing lengthy codes. All this while, they have their headphones plugged in, listening to music. What songs or music genre best describes your work ethic?

Johan: Wow, this is tough for me! Maybe classical, Baroque stuff that moves quickly through different movements. My day is rapidly changing, and I like to think it has a similar underlying order.

Arbaz: Coming back to Johan, the Engineer at work, considering the current scenario around the COVID-19 outbreak where companies have asked their employees to work remotely, what do you think is the biggest problem/challenge with remote work for an engineering team?

Johan: I think the biggest challenge nowadays is kind of maintaining the sense of team and comradery that you had during normal operations. It’s really easy in an environment where you spend all of your time at home and only communicate via instant messenger or email or the occasional video conference to get lost in work and to not have a good way to separate your personal time from your work time. It’s really important for leaders to reach out to the people on their teams to make sure that people are doing well in their assigned projects and also in their home lives and try to make accommodations as this is a challenging period for everyone.

Arbaz: The outbreak is pretty serious and we don't know when it's gonna end. Wishing all our listeners the best of health and please stay safe. Now comes a question that I love asking all my guests on this podcast. Code quality and technical debt are two terms that we often hear from engineering leaders. Keeping them in mind, how do you maintain a balance of technical stability (minimize technical debt) while still delivering high-quality code?

Johan: This is a really great question. A lot of people think that SRE is the team that exists to say no. And certainly, no system is more stable and reliable as one that never changes. But systems like that are seldom very useful. I think that SRE exists to make changes as easy and fast as possible without the wheels flying off the car. So if you have robust testing, a release system that lets you canary changes effectively, and can roll back changes quickly and easily, deliver as fast as you can. It's only when you start to see gaps in these areas that SRE starts to recommend being more cautious. I'd much rather own a project where we made frequent changes through a well-understood and tested process than own a more "Stable" service that only released quarterly.

A colleague of mine who I respect a lot once said that a service can't have "haunted graveyards". If there's a place or thing you're afraid to touch or change, it is your responsibility to exercise it until it is understood well enough to change it safely. Otherwise, you risk having to make such a change when you are least prepared to under fire.

Arbaz: With all the new advancements in technology, the introduction of concepts like Machine Learning and Artificial Intelligence, how do you see the technical landscape changing over the next few years and how will you prepare engineering for that?

Johan: Oh, man, I'm terrible at this. I mean, obviously, things continue to move to the cloud. Maintaining either expensive on-premises data centers or expensive offices for engineers is going to be seen as more of an unnecessary cost. It's currently justified by "We've always done it this way" or "there's no other way to meet our regulatory burdens", but if you imagine starting a new business today, how much would you invest in building your own on-premises services for things the SDLC, authentication, email, etc? I know I'm not saying anything novel or profound here, but trying to keep a grasp on what the state of the market is and moving away from capital-intensive "build our own" is probably what's in the cards for anyone not in a gigantic cloud provider.

Arbaz: Taking you back in time, around 20-25 years, just a fun question here, what was the first programming language you started to code in?

Johan: I did some Pascal very early on, and my first "real" code was in C.

Arbaz: A few minutes ago we talked about getting the right talent for building a strong and performing engineering team, what according to you is the most challenging part of any technical assessment/interview from a Hiring Manager perspective?

Johan: Assessment of a new system, or of an engineer? For a system, probably trying to determine dependencies as well as establish the best SLIs.

For a person, I am most interested in trying to evaluate how well they learn, rather than their expertise in any particular technology. Technology, as you talked about before, is constantly changing, and a good engineer will be able to pick up what is needed. This means less "what are the various list functions in Python" and more "in whatever language you are familiar with, help me solve this general problem".

Arbaz: If not engineering, what alternate profession would you have seen yourself excel in?

Johan: Maybe teaching? I really enjoy explaining how things work to people and working through problems with them. You learn a thing best by teaching it to others.

Arbaz: Finally before we sign off and end today’s episode one last question for you - What would be your 1 tip for all Developers, Engineering Managers, VPs, and Directors of Engineering for being the best at what they do?

Johan: One piece of advice for everyone? Probably something about humility/willingness to listen. People who ask questions or express reservations aren't attacking you. It's easy, especially for leaders, but even smart engineers on teams, to be super-confident in your own abilities and ideas. But even if you ARE 100% right, if you are shooting other people down when they bring you questions or concerns, it trains the people around you to not bring you new information, and that's the last thing someone who is trying to be the best wants.

Arbaz: It was a pleasure having you as a part of today’s episode, Johan. It was really informative and insightful to hear from a leader like yourself.

Johan: Arbaz, it was a real pleasure. Thank you for inviting me. I had a really good time.

Arbaz: This brings us to the end of today’s episode of Breaking 404. Stay tuned for more such awesome enlightening episodes. Don’t forget to subscribe to our channel ‘Breaking 404 by HackerEarth’ on iTunes, Spotify, Google Podcasts, SoundCloud and TuneIn. This is Arbaz, your host signing off until next time. Thank you so much, everyone!

About Johan Andersen:

Johan Andersen is an engineering leader with a broad experience creating and developing teams to focus on improving the reliability and scalability of large distributed systems. Johan is currently an Engineering Director at Citadel, where he manages several teams with responsibility for the middle and back-office operations for the firm. Before that, he was a senior SRE manager at Google, where he worked on a wide variety of infrastructure and application teams from Storage to Docs to Search Indexing. Prior to Google, Johan led the Security Architecture team at Morgan Stanley. He has a BS and MS in Computer Science from Columbia University.

Tackling large user traffic with Ajay Sampat, Sr. Engineering Manager, Lyft

In our first episode of Breaking 404, a podcast bringing to you stories and unconventional wisdom from engineering leaders of top global organizations around the globe, we caught up with Ajay Sampat, Sr. Engineering Manager, Lyft to understand the challenges that engineering teams across domains face while tackling large user traffic. Through this episode, Ajay shares his personal experiences and hardships that developers/engineers face in their day-to-day tasks.

Subscribe: Spotify | iTunes | Stitcher | SoundCloud | TuneIn

Arbaz: Hello everyone and welcome to the first episode of Breaking 404 by HackerEarth, a podcast for all engineering enthusiasts, professionals and leaders to learn from top influencers in the engineering and technology industry. This is your host Arbaz and today I have with me Ajay Sampat, Sr. Engineering Manager at Lyft, a ridesharing company based in San Francisco, California.

Ajay: It’s great to be here and share my journey with the global HackerEarth community.

Arbaz: So let’s get started with a little bit about yourself? How has your professional journey been?

Ajay:

  • I moved from Mumbai, India to the United States when I was 18.
  • I graduated with bachelor's & master's degrees in computer science & engineering from Ohio State & Santa Clara University respectively where I had a deep interest in how computers interacted with each other at lightning speed across the globe over the internet.
  • I started my career working on block storage and supercomputers at HITACHI.
  • I learned a lot from the Japanese work culture about focus, dedication, and quality.

KIXEYE

  • I knew I wanted to work on a consumer-focused product and hence took a leap of faith in online and mobile games with KIXEYE.
  • I learned about growth culture and tactics from KIXEYE - building out a full stack team that focused on Growth Funnel of Acquisition, Activation, Retention, Revenue, and Referrals.

TEXTNOW

  • I took those learnings to the telecommunication vertical with TextNow building out the Business Intelligence and growth teams building products on user segmentation and insights, attribution, lifetime value prediction, experimentation, user engagement.

LYFT

  • Currently, I head the Marketing Automation team at Lyft focusing on the top part of the funnel for strategic investments across paid and owned channels to scale both drivers and riders in a two-way marketplace.

Throughout my professional journey, I have had moments of introspection and self-discovery. I have asked myself:

  • What do I really enjoy? Product Management or People Management?
  • Do I want to work for a small, midsize or large company?
  • What culture and values do I want the company to embody?
  • What skills do I want to develop?
  • What personal brand do I want to create?

Arbaz: One thing that all engineers would be inquisitive to know is, what is the biggest fear that you have, being the Sr. Engineering Manager at Lyft?

Ajay: This is not specific to Lyft but my biggest fear is not being able to create a highly functional team that delivers impact on the business. There are a lot of sub-dimensions to this but the key point I would like to highlight is the ability to hire and retain top talent in the competitive bay area market.

Arbaz: The burning question that everyone would love to know from someone working in the Lyft engineering team is: how does Lyft bring up a robust and scalable platform for managing high user traffic at certain times of the day?

Ajay: This is a culmination of years of hard work and learning from hundreds of engineers at Lyft encompassing Infrastructure, Developer productivity, and platform teams. I am fortunate to work with amazingly bright people who are passionate about their craft and the problems they are solving every day. Lyft shares a lot of in-depth articles regarding our technical challenges and our approach to solving those problems in our engineering blog - eng.lyft.com. I would also like to mention that Lyft is a major contributor to the open-source community. You can find our latest and greatest advancements in networking, security, data management at lyft.github.io.

Arbaz: That’s great to know. On the personal side, what is your favorite leisure-time activity that you love to do when not working?

Ajay: Spending quality time with my son - reading him stories, taking him to the park with our dog, working on puzzles and experiencing nature during our camping trip. “This is the greatest joy of my family's life.”

Arbaz: That’s really wonderful. Back to Ajay, the professional, one thing that all tech companies globally are looking for is to minimize technical debt. So, how do you maintain a balance of technical stability (minimize technical debt) while still delivering high-quality code?

Ajay: We like to use this question in our manager interviews. I think this depends a lot on the maturity and criticality of the feature. E.g: Tier 0 core rides API should not be held to the same quality standard of a tier 2 funnel conversion feature. In the early stages of a new feature, it is important to experiment a lot in beta, with small rollouts to gather customer feedback. This might lead to some interim shortcuts and tech debt but once it's decided that an experiment is going to be turned into a long-lasting feature it is important to scope it holistically with test coverage, edge cases, scaling, fallback plan and so on. When it comes to mid to long term planning - it is important to view all workstreams with the same lens - engineering effort vs business impact. This requires that one is accurately able to quantify the impact of working on tech debt or the addition of a new feature and help the business make the appropriate tradeoff.

Arbaz: With all the innovation and new technologies coming up, how do you see the technical landscape changing over the next few years and how will you prepare engineering for that?

Ajay: Jensen Huang, Nvidia CEO once said: “Software Is Eating the World, but AI Is Going to Eat Software”. It is getting increasingly clear that we are moving from a Mobile-first to an AI-first world. It’s all around us from the intelligent vacuum cleaners at home to the smart cars we drive.

Two main areas that intrigue me:

  • The first is AI plug-ins & IDEs like Kite and PyCharm which are making coding easier and more accessible. They are significantly reducing the barrier to entry to coding and now almost anyone with basic training can build web and mobile apps.
  • The second is AutoML which is democratizing Machine Learning and providing ML as a service. With advancements in ML libraries like sklearn, tensorflow, xgboost, and tools like DataRobot and H2O.ai, major resource-intensive activities like feature engineering, model selection, training, and tuning are being automated, leading to faster and higher accuracy models.

These technologies will continue to make great strides in the years to come.

Arbaz: Now, taking you a few years back and trying to get the fresh graduate developer out of you here. From a candidate’s point of view, what do you think is the most challenging part of any technical job assessment or interview?

Ajay: My belief is - that for most people it is Anxiety. Let's take a coding interview, for example. Obviously, you need some basic technical knowledge of data structures, algorithms, and problem-solving to do well in a coding interview which I feel most software engineers do. Where most people suffer is they let self-doubt or anxiety get the best of them. I feel if people stay calm and focused during a technical assessment, they will be able to hear the question properly, recollect their learnings, ask the interviewer the right questions and perform their best!

Arbaz: Very well said! Taking you further back in time, what was the first programming language you started to code in?

Ajay: I got my first computer which was a Pentium III in 1999, over 20 years ago. The first programming language I coded in was HTML which was self-taught so I could build a website and have my presence known on the Internet.

Arbaz: What would be your 1 tip for all Developers, Engineering Managers, VPs and Directors for being the best at what they do?

Ajay: Albert Einstein said, “Once you stop learning, you start dying”. The technology landscape is constantly evolving. This makes it very important for everyone to stay up to date with the latest trends that interest them so they can continue to sharpen their skills. That could be the latest front end coding language, cloud service or growth tactic. Luckily, this is much easier now with the plethora of knowledge consumption mediums like blogs, e-magazines, videos & podcasts.

Arbaz: Engineers and Hiring Managers are usually thought of as really serious people who are engrossed in their work and not very social. Although we see most developers plugged in with their headphones and listening to songs. What songs or music genre best describes your work ethic?

Ajay: It has to be deep house with its high momentum and tempos. And like real work and life it has buildups and drops.

Arbaz: Lastly, If not engineering, what alternate profession would you have seen yourself excel in?

Ajay: I can see myself being in stock or commodity trading which runs in the family. Our family business has been an integral part of my childhood and has had a lasting impression on me. It has taught me the value of honesty and hard work. Trading requires constant researching, building long term strategies and relationships which I enjoy a lot.

Arbaz: It was a pleasure having you as a part of today’s episode. It was really informative and insightful to hear from you.

Ajay: Thank you for having me Arbaz and HackerEarth.

Arbaz: This brings us to the end of today’s episode. Stay tuned for more such enlightening episodes. This is Arbaz, your host signing off until next time.

About Ajay Sampat:

Ajay Sampat is a seasoned growth engineering professional with expertise in scaling companies with state-of-the-art growth technology stacks. Ajay currently heads the Marketing Automation team at Lyft. Prior to Lyft, he started the SF office for Canadian startup TextNow and led its Business Intelligence & Growth teams, making it a top 30 Android app and top 100 iOS App, tripling their DAU and revenue. Before TextNow, he spent three years at KIXEYE building out the Growth engineering organization managing multiple successful desktop and mobile game launches. Ajay started his career at Hitachi working on block storage and supercomputers. Ajay has a BS in Computer Science from The Ohio State University and an MS in Computer Engineering from Santa Clara University.

Links:

Twitter: @asampat

LinkedIn: https://www.linkedin.com/in/ajaysampat/

Website: www.ajay.digital

20 Machine Learning/Artificial Intelligence Influencers To Follow In 2024


Currently employed as the Director of Machine Learning in the Special Projects Group at Apple Inc., Ian Goodfellow has majorly contributed to the Deep Learning space. He is the inventor of generative adversarial networks, an ML technique that is being used by Facebook. Earlier in his career, he worked with Google, playing a key role in Street Smart (Google Maps) and Google Brain (AI Research) teams. Besides that, he has also co-authored a comprehensive book, Deep Learning, alongside Yoshua Beng and Aaron Courville.



Jason Brownlee11. Jason Brownlee
Follow @TeachTheMachine
With the aim of ‘making developers awesome at Machine Learning’, Jason Brownlee founded the Machine Learning Mastery—a community offering various collaterals to help developers enhance their skills of applied Machine Learning.





Jess Hamrick12. Jess Hamrick
Follow @jhamrick
Currently employed as a research scientist at DeepMind, Jess Hamrick is a cognitive science enthusiast. Her key research area lies in human cognition by combining ML models with cognitive science. She is also one of the key maintainers of Jupyter/nbgrader—an open-source tool used to creating and grading assignments in the Jupyter notebook.



Kirk Borne13. Dr. Kirk Borne
Follow @KirkDBorne
Dr. Kirk Borne, a data scientist and astrophysicist, is one of the leading influencers in the Big Data/Data Science/AI space. He is currently employed as the Principal Data Scientist and Executive Advisor at Booz Allen Hamilton. He has also been a professor of astrophysics and computational science at George Mason University for over twelve years. His work has majorly contributed to various projects including NASA’s Hubble Space Telescope.



Martin Ford14. Martin Ford
Follow @MFordFuture
Martin Ford is a well-acclaimed futurist and a keynote speaker, elaborating on topics such as AI and robotics, and their possible impacts on the market, economy, and society. He is also an author of three books, including the New York Times bestseller, Rise of the Robots: Technology and the Threat of a Jobless Future. He is also the Consulting Artificial Intelligence Expert for the Rise of the Robots Index project for Societe Generale Corporate and Investment Banking.



Mike Tamir15. Mike Tamir
Follow @MikeTamir
Mike Tamir is currently the Chief Machine Learning Scientist and head of ML/AI at Susquehanna International Group, LLP (SIG). He is also a Data Science faculty member at UC Berkeley. Prior to this, he served as the Head of Data Science at Uber Advanced Technologies Group, and as the Chief Science Officer at Galvanize Inc. Earlier in his career, he was a faculty member at the University of Pittsburgh and Columbia University.



Oriol Vinyals16. Oriol Vinyals
Follow @OriolVinyalsML
Oriol Vinyals is employed as a Principal Research Scientist at Google DeepMind, leading the Deep Learning team there. He has also led the AlphaStar team that developed the first AI that defeats the top professional players of the game, StarCraft. In the past, he was a Senior Research Scientist in the Google Brain team.



Peter Skomoroch17. Peter Skomoroch
Follow @peteskomoroch
Presently serving as a senior executive and investor for numerous ML-driven startups and venture capital funds, Peter Skomoroch has over twenty years of experience in the Data Science industry. Over the years, he has worked as a Senior Research Engineer at the AOL Search Analytics team, Director of Analytics at Juice Analytics, Principal Data Scientist at LinkedIn, CEO and Co-founder of SkipFlag, and Head of AI Automation & Data Products at Workday, among various other roles. At LinkedIn, he played a key role in ideating, creating, and deploying LinkedIn Skills and Endorsements.



Soumith Chintala18. Soumith Chintala
Follow @soumithchintala
Soumith Chintala has co-created and led PyTorch, an open-source Machine Learning library developed by the Facebook AI Research lab for Computer Vision and Natural Language Processing applications. Having worked in the past on projects such as Google Street View House Numbers, pedestrian detection, sentiment analysis, and at New York University, he is also an extensive researcher in the ML space.



Yann LeCun19. Yann LeCun
Follow @ylecun
Yann LeCun is the VP and Chief AI Scientist at Facebook, leading the scientific and technical AI research and development for the organization. In addition, he is a professor at New York University. Early on in his career, he headed the Image Processing Research Department at AT&T Labs Research. Being one of the Godfathers of AI, he has made a huge contribution in the field of Computer Vision and Optical Character Recognition. He is also one of the 2018 ACM A.M. Turing Award laureates for his contribution to the AI domain.



Yoshua Bengio20. Yoshua Bengio

Yoshua Bengio is one of the pioneers in the ML space, owing to his work on artificial neural networks and Deep Learning. He has been a professor in the Department of Computer Science and Operations Research at the Université de Montréal for over twenty-five years. He also heads the Montreal Institute for Learning Algorithms. Yoshua Bengio, Geoffrey Hinton, and Yann LeCun are considered as the Godfathers of AI and have been awarded the 2018 ACM A.M. Turing Award for achieving major breakthroughs in deep neural networks.
In the Spotlight

Technical Screening Guide: All You Need To Know

Read this guide and learn how you can establish a less frustrating developer hiring workflow for both hiring teams and candidates.
Read More
Top Products

Explore HackerEarth’s top products for Hiring & Innovation

Discover powerful tools designed to streamline hiring, assess talent efficiently, and run seamless hackathons. Explore HackerEarth’s top products that help businesses innovate and grow.
Frame
Hackathons
Engage global developers through innovation
Arrow
Frame 2
Assessments
AI-driven advanced coding assessments
Arrow
Frame 3
FaceCode
Real-time code editor for effective coding interviews
Arrow
Frame 4
L & D
Tailored learning paths for continuous assessments
Arrow
Authors

Meet our Authors

Get to know the experts behind our content. From industry leaders to tech enthusiasts, our authors share valuable insights, trends, and expertise to keep you informed and inspired.
Ruehie Jaiya Karri
Kumari Trishya

Forecasting Tech Hiring Trends For 2023 With 6 Experts

2023 is here, and it is time to look ahead. Start planning your tech hiring needs as per your business requirements, revamp your recruiting processes, and come up with creative ways to land that perfect “unicorn candidate”!

Right? Well, jumping in blindly without heeding what this year holds for you can be a mistake. So before you put together your plans, ask yourselves this—What are the most important 2023 recruiting trends in tech hiring that you should be prepared for? What are the predictions that will shape this year?

We went around and posed three important questions to industry experts that were on our minds. And what they had to say certainly gave us some food for thought!

Before we dive in, allow me to introduce you to our expert panel of six, who had so much to say from personal experience!

Meet the Expert Panel

Radoslav Stankov

Radoslav Stankov has more than 20 years of experience working in tech. He is currently Head of Engineering at Product Hunt. Enjoys blogging, conference speaking, and solving problems.

Mike Cohen

Mike “Batman” Cohen is the Founder of Wayne Technologies, a Sourcing-as-a-Service company providing recruitment data and candidate outreach services to enhance the talent acquisition journey.

Pamela Ilieva

Pamela Ilieva is the Director of International Recruitment at Shortlister, a platform that connects employers to wellness, benefits, and HR tech vendors.

Brian H. Hough

Brian H. Hough is a Web2 and Web3 software engineer, AWS Community Builder, host of the Tech Stack Playbook™ YouTube channel/podcast, 5-time global hackathon winner, and tech content creator with 10k+ followers.

Steve O'Brien

Steve O'Brien is Senior Vice President, Talent Acquisition at Syneos Health, leading a global team of top recruiters across 30+ countries in 24+ languages, with nearly 20 years of diverse recruitment experience.

Patricia (Sonja Sky) Gatlin

Patricia (Sonja Sky) Gatlin is a New York Times featured activist, DEI Specialist, EdTechie, and Founder of Newbies in Tech. With 10+ years in Higher Education and 3+ in Tech, she now works part-time as a Diversity Lead recruiting STEM professionals to teach gifted students.

Overview of the upcoming tech industry landscape in 2024

Continued emphasis on remote work and flexibility: As we move into 2024, the tech industry is expected to continue embracing remote work and flexible schedules. This trend, accelerated by the COVID-19 pandemic, has proven to be more than a temporary shift. Companies are finding that remote work can lead to increased productivity, a broader talent pool, and better work-life balance for employees. As a result, recruiting strategies will likely focus on leveraging remote work capabilities to attract top talent globally.

Rising demand for AI and Machine Learning Skills: Artificial Intelligence (AI) and Machine Learning (ML) continue to be at the forefront of technological advancement. In 2024, these technologies are expected to become even more integrated into various business processes, driving demand for professionals skilled in AI and ML. Companies will likely prioritize candidates with expertise in these areas, and there may be an increased emphasis on upskilling existing employees to meet this demand.

Increased focus on cybersecurity: With the digital transformation of businesses, cybersecurity remains a critical concern. The tech industry in 2024 is anticipated to see a surge in the need for cybersecurity professionals. Companies will be on the lookout for talent capable of protecting against evolving cyber threats and ensuring data privacy.

Growth in cloud computing and edge computing: Cloud computing continues to grow, but there is also an increasing shift towards edge computing – processing data closer to where it is generated. This shift will likely create new job opportunities and skill requirements, influencing recruiting trends in the tech industry.

Sustainable technology and green computing: The global emphasis on sustainability is pushing the tech industry towards green computing and environmentally friendly technologies. In 2024, companies may seek professionals who can contribute to sustainable technology initiatives, adding a new dimension to tech recruiting.

Emphasis on soft skills: While technical skills remain paramount, soft skills like adaptability, communication, and problem-solving are becoming increasingly important. Companies are recognizing the value of these skills in fostering innovation and teamwork, especially in a remote or hybrid work environment.

Diversity, Equity, and Inclusion (DEI): There is an ongoing push towards more diverse and inclusive workplaces. In 2024, tech companies will likely continue to strengthen their DEI initiatives, affecting how they recruit and retain talent.

6 industry experts predict the 2023 recruiting trends

#1 We've seen many important moments in the tech industry this year...

Rado: In my opinion, a lot of those will carry over. I felt this was a preparation year for what was to come...

Mike: I wish I had the crystal ball for this, but I hope that when the market starts picking up again...

Pamela: Quiet quitting has been here way before 2022, and it is here to stay if organizations and companies...

Pamela Ilieva, Director of International Recruitment, Shortlister

Also, read: What Tech Companies Need To Know About Quiet Quitting


Brian: Yes, absolutely. In the 2022 Edelman Trust Barometer report...

Steve: Quiet quitting in the tech space will naturally face pressure as there is a redistribution of tech talent...

Patricia: Quiet quitting has been around for generations—people doing the bare minimum because they are no longer incentivized...

Patricia Gatlin, DEI Specialist and Curator, #blacklinkedin

#2 What is your pro tip for HR professionals/engineering managers...

Rado: Engineering managers should be able to do "more-with-less" in the coming year.

Radoslav Stankov, Head of Engineering, Product Hunt

Mike: Well first, (shameless plug), be in touch with me/Wayne Technologies as a stop-gap for when the time comes.

Mike “Batman” Cohen, Founder of Wayne Technologies

It's in the decrease and increase where companies find the hardest challenges...

Pamela: Remain calm – no need to “add fuel to the fire”!...

Brian: We have to build during the bear markets to thrive in the bull markets.

Companies can create internal hackathons to exercise creativity...


Also, read: Internal Hackathons - Drive Innovation And Increase Engagement In Tech Teams


Steve: HR professionals facing a hiring freeze will do well to “upgrade” processes, talent, and technology aggressively during downtime...

Steve O'Brien, Senior Vice President, Talent Acquisition at Syneos Health

Patricia: Talk to hiring managers in all your departments. Ask, what are the top 3-5 roles they are hiring for in the new year?...


Also, watch: 5 Recruiting Tips To Navigate The Hiring Freeze With Shalini Chandra, Senior TA, HackerEarth


#3 What top 3 skills would you like HR professionals/engineering managers to add to their repertoire in 2023 to deal with upcoming challenges?

6 industry experts predict the 2023 recruiting trends

Rado: Prioritization, team time, and environment management.

I think "prioritization" and "team time" management are obvious. But what do I mean by "environment management"?

A productive environment is one of the key ingredients for a productive team. Look at where your team wastes most time, which can be automated. For example, end-to-end writing tests take time because our tools are cumbersome and undocumented. So let's improve this.

Mike: Setting better metrics/KPIs, moving away from LinkedIn, and sharing more knowledge.

  1. Metrics/KPIs: Become better at setting measurable KPIs and accountable metrics. They are not the same thing—it's like the Square and Rectangle. One fits into the other but they're not the same. Hold people accountable to metrics, not KPIs. Make sure your metrics are aligned with company goals and values, and that they push employees toward excellence, not mediocrity.
  2. Freedom from LinkedIn: This is every year, and will probably continue to be. LinkedIn is a great database, but it is NOT the only way to find candidates, and oftentimes, not even the most effective/efficient. Explore other tools and methodologies!
  3. Join the conversation: I'd love to see new names of people presenting at conferences and webinars. And also, see new authors on the popular TA content websites. Everyone has things they can share—be a part of the community, not just a user of. Join FB groups, write and post articles, and comment on other people's posts with more than 'Great article'. It's a great community, but it's only great because of the people who contribute to it—be one of those people.

Pamela: Resilience, leveraging data, and self-awareness.

  1. Resilience: A “must-have” skill for the 21st century due to constant changes in the tech industry. Face and adapt to challenges. Overcome them and handle disappointments. Never give up. This will keep HR people alive in 2023.
  2. Data skills: Get some data analyst skills. The capacity to transfer numbers into data can help you be a better HR professional, prepared to improve the employee experience and show your leadership team how HR is leveraging data to drive business results.
  3. Self-awareness: Allows you to react better to upsetting situations and workplace challenges. It is a healthy skill to cultivate – especially as an HR professional.

Also, read: Diving Deep Into The World Of Data Science With Ashutosh Kumar


Brian: Agility, resourcefulness, and empathy.

  1. Agility: Allows professionals to move with market conditions. Always be as prepared as possible for any situation to come. Be flexible based on what does or does not happen.
  2. Resourcefulness: Allows professionals to do more with less. It also helps them focus on how to amplify, lift, and empower the current teams to be the best they can be.
  3. Empathy: Allows professionals to take a more proactive approach to listening and understanding where all workers are coming from. Amid stressful situations, companies need empathetic team members and leaders alike who can meet each other wherever they are and be a support.

Steve: Negotiation, data management, and talent development.

  1. Negotiation: Wage transparency laws will fundamentally change the compensation conversation. We must ensure we are still discussing compensation early in the process. And not just “assume” everyone’s on the same page because “the range is published”.
  2. Data management and predictive analytics: Looking at your organization's talent needs as a casserole of indistinguishable components and demands will not be good enough. We must upgrade the accuracy and consistency of our data and the predictions we can make from it.

Also, read: The Role of Talent Intelligence in Optimizing Recruitment


  1. Talent development: We’ve been exploring the interplay between TA and TM for years. Now is the time to integrate your internal and external talent marketplaces. To provide career experiences to people within your organization and not just those joining your organization.

Patricia: Technology, research, and relationship building.

  1. Technology: Get better at understanding the technology that’s out there. To help you speed up the process, track candidate experience, but also eliminate bias. Metrics are becoming big in HR.
  2. Research: Honestly, read more books. Many great thought leaders put out content about the “future of work”, understanding “Gen Z”, or “quiet quitting.” Dedicate work hours to understanding your ever-changing field.
  3. Relationship Building: Especially in your immediate communities. Most people don’t know who you are or what exactly it is that you do. Build your personal brand and what you are doing at your company to impact those closest to you. Create a referral funnel to get a pipeline going. When people want a job you and your company ought to be top of mind. Also, tell the stories of the people that work there.

7 Tech Recruiting Trends To Watch Out For In 2024

The last couple of years transformed how the world works and the tech industry is no exception. Remote work, a candidate-driven market, and automation are some of the tech recruiting trends born out of the pandemic.

While accepting the new reality and adapting to it is the first step, keeping up with continuously changing hiring trends in technology is the bigger challenge right now.

What does 2024 hold for recruiters across the globe? What hiring practices would work best in this post-pandemic world? How do you stay on top of the changes in this industry?

The answers to these questions will paint a clearer picture of how to set up for success while recruiting tech talent this year.

7 tech recruiting trends for 2024

6 Tech Recruiting Trends To Watch Out For In 2022

Recruiters, we’ve got you covered. Here are the tech recruiting trends that will change the way you build tech teams in 2024.

Trend #1—Leverage data-driven recruiting

Data-driven recruiting strategies are the answer to effective talent sourcing and a streamlined hiring process.

Talent acquisition leaders need to use real-time analytics like pipeline growth metrics, offer acceptance rates, quality and cost of new hires, and candidate feedback scores to reduce manual work, improve processes, and hire the best talent.

The key to capitalizing on talent market trends in 2024 is data. It enables you to analyze what’s working and what needs refinement, leaving room for experimentation.

Trend #2—Have impactful employer branding

98% of recruiters believe promoting company culture helps sourcing efforts as seen in our 2021 State Of Developer Recruitment report.

Having a strong employer brand that supports a clear Employer Value Proposition (EVP) is crucial to influencing a candidate’s decision to work with your company. Perks like upskilling opportunities, remote work, and flexible hours are top EVPs that attract qualified candidates.

A clear EVP builds a culture of balance, mental health awareness, and flexibility—strengthening your employer brand with candidate-first policies.

Trend #3—Focus on candidate-driven market

The pandemic drastically increased the skills gap, making tech recruitment more challenging. With the severe shortage of tech talent, candidates now hold more power and can afford to be selective.

Competitive pay is no longer enough. Use data to understand what candidates want—work-life balance, remote options, learning opportunities—and adapt accordingly.

Recruiters need to think creatively to attract and retain top talent.


Recommended read: What NOT To Do When Recruiting Fresh Talent


Trend #4—Have a diversity and inclusion oriented company culture

Diversity and inclusion have become central to modern recruitment. While urgent hiring can delay D&I efforts, long-term success depends on inclusive teams. Our survey shows that 25.6% of HR professionals believe a diverse leadership team helps build stronger pipelines and reduces bias.

McKinsey’s Diversity Wins report confirms this: top-quartile gender-diverse companies see 25% higher profitability, and ethnically diverse teams show 36% higher returns.

It's refreshing to see the importance of an inclusive culture increasing across all job-seeking communities, especially in tech. This reiterates that D&I is a must-have, not just a good-to-have.

—Swetha Harikrishnan, Sr. HR Director, HackerEarth

Recommended read: Diversity And Inclusion in 2022 - 5 Essential Rules To Follow


Trend #5—Embed automation and AI into your recruitment systems

With the rise of AI tools like ChatGPT, automation is being adopted across every business function—including recruiting.

Manual communication with large candidate pools is inefficient. In 2024, recruitment automation and AI-powered platforms will automate candidate nurturing and communication, providing a more personalized experience while saving time.

Trend #6—Conduct remote interviews

With 32.5% of companies planning to stay remote, remote interviewing is here to stay.

Remote interviews expand access to global talent, reduce overhead costs, and increase flexibility—making the hiring process more efficient for both recruiters and candidates.

Trend #7—Be proactive in candidate engagement

Delayed responses or lack of updates can frustrate candidates and impact your brand. Proactive communication and engagement with both active and passive candidates are key to successful recruiting.

As recruitment evolves, proactive candidate engagement will become central to attracting and retaining talent. In 2023 and beyond, companies must engage both active and passive candidates through innovative strategies and technologies like chatbots and AI-powered systems. Building pipelines and nurturing relationships will enhance employer branding and ensure long-term hiring success.

—Narayani Gurunathan, CEO, PlaceNet Consultants

Recruiting Tech Talent Just Got Easier With HackerEarth

Recruiting qualified tech talent is tough—but we’re here to help. HackerEarth for Enterprises offers an all-in-one suite that simplifies sourcing, assessing, and interviewing developers.

Our tech recruiting platform enables you to:

  • Tap into a 6 million-strong developer community
  • Host custom hackathons to engage talent and boost your employer brand
  • Create online assessments to evaluate 80+ tech skills
  • Use dev-friendly IDEs and proctoring for reliable evaluations
  • Benchmark candidates against a global community
  • Conduct live coding interviews with FaceCode, our collaborative coding interview tool
  • Guide upskilling journeys via our Learning and Development platform
  • Integrate seamlessly with all leading ATS systems
  • Access 24/7 support with a 95% satisfaction score

Recommended read: The A-Zs Of Tech Recruiting - A Guide


Staying ahead of tech recruiting trends, improving hiring processes, and adapting to change is the way forward in 2024. Take note of the tips in this article and use them to build a future-ready hiring strategy.

Ready to streamline your tech recruiting? Try HackerEarth for Enterprises today.

Code In Progress - The Life And Times Of Developers In 2021

Developers. Are they as mysterious as everyone makes them out to be? Is coding the only thing they do all day? Good coders work around the clock, right?

While developers are some of the most coveted talent out there, they also have the most myths being circulated. Most of us forget that developers too are just like us. And no, they do not code all day long.

We wanted to bust a lot of these myths and shed light on how the programming world looks through a developer’s lens in 2021—especially in the wake of a global pandemic. This year’s edition of the annual HackerEarth Developer Survey is packed with developers’ wants and needs when choosing jobs, major gripes with the WFH scenario, and the latest market trends to watch out for, among others.

Our 2021 report is bigger and better, with responses from 25,431 developers across 171 countries. Let’s find out what makes a developer tick, shall we?

Developer Survey

“Good coders work around the clock.” No, they don’t.

Busting the myth that developers spend the better part of their day coding, 52% of student developers said that they prefer to code for a maximum of 3 hours per day.

When not coding, devs swear by their walks as a way to unwind. When we asked devs the same question last year, they said they liked to indulge in indoor games like foosball. In 2021, going for walks has become the most popular method of de-stressing. We’re chalking it up to working from home and not having a chance to stretch their legs.

Staying ahead of the skills game

Following the same trend as last year, students (39%) and working professionals (44%) voted for Go as one of the most popular programming languages that they want to learn. The other programming languages that devs are interested in learning are Rust, Kotlin, and Erlang.

Programming languages that students are most skilled at are HTML/CSS, C++, and Python. Senior developers are more comfortable working with HTML/CSS, SQL, and Java.

How happy are developers

Employees from middle market organizations had the highest 'happiness index' of 7.2. Experienced developers who work at enterprises are marginally less happy in comparison to people who work at smaller companies.

However, happiness is not a binding factor for where developers work. Despite scoring the least on the happiness scale, working professionals would still like to work at enterprise companies and growth-stage startups.

What works when looking for work

Student devs (63%), who are just starting in the tech world, said a good career growth curve is a must-have. Working professionals can be wooed by offers of a good career path (69%) and compensation (68%).

One trend that has changed since last year is that at least 50% of students and working professionals alike care a lot more about ESOPs and positive Glassdoor reviews now than they did in 2020.


To know more about what developers want, download your copy of the report now!


We went a step further and organized an event with our CEO, Sachin Gupta, Radoslav Stankov, Head of Engineering at Product Hunt, and Steve O’Brien, President of Talent Solutions at Job.com to further dissect the findings of our survey.

Tips straight from the horse’s mouth

Steve highlighted how the information collated from the developer survey affects the recruiting community and how they can leverage this data to hire better and faster.

  • The insight where developer happiness is correlated to work hours didn’t find a significant difference between the cohorts. Devs working for less than 40 hours seemed marginally happier than those that clocked in more than 60 hours a week.
“This is an interesting data point, which shows that devs are passionate about what they do. You can increase their workload by 50% and still not affect their happiness. From a work perspective, as a recruiter, you have to get your hiring manager to understand that while devs never say no to more work, HMs shouldn’t overload the devs. Devs are difficult to source and burnout only leads to killing your talent pool, which is something that you do not want,” says Steve.
  • Roughly 45% of both student and professional developers learned how to code in college was another insight that was open to interpretation.
“Let’s look at it differently. Less than half of the surveyed developers learned how to code in college. There’s a major segment of the market today that is not necessarily following the ‘college degree to getting a job’ path. Developers are beginning to look at their skillsets differently and using various platforms to upskill themselves. Development is not about pedigree, it’s more about the potential to demonstrate skills. This is an interesting shift in the way we approach testing and evaluating devs in 2021.”

Rado contextualized the data from the survey to see what it means for the developer community and what trends to watch out for in 2021.

  • Node.js and AngularJS are the most popular frameworks among students and professionals.
“I was surprised by how many young students wanted to learn AngularJS, given that it’s more of an enterprise framework. Another thing that stood out to me was that the younger generation wants to learn technologies that are not necessarily cool like ExtJS (35%). This is good because people are picking technologies that they enjoy working with instead of just going along with what everyone else is doing. This also builds a more diverse technology pool.” — Rado
  • 22% of devs say ‘Zoom Fatigue’ is real and directly affects productivity.
“Especially for younger people who still haven’t figured out a routine to develop their skills, there is something I’d like you to try out. Start using noise-canceling headphones. They help keep distractions to a minimum. I find clutter-free working spaces to be an interesting concept as well.”

The last year and a half have been a doozy for developers everywhere, with a lot of things changing, and some things staying the same. With our developer survey, we wanted to shine the spotlight on skill-based hiring and market trends in 2021—plus highlight the fact that developers too have their gripes and happy hours.

Uncover many more developer trends for 2021 with Steve and Rado below:

View all

Best Pre-Employment Assessments: Optimizing Your Hiring Process for 2024

In today's competitive talent market, attracting and retaining top performers is crucial for any organization's success. However, traditional hiring methods like relying solely on resumes and interviews may not always provide a comprehensive picture of a candidate's skills and potential. This is where pre-employment assessments come into play.

What is Pre-Employement Assessment?

Pre-employment assessments are standardized tests and evaluations administered to candidates before they are hired. These assessments can help you objectively measure a candidate's knowledge, skills, abilities, and personality traits, allowing you to make data-driven hiring decisions.

By exploring and evaluating the best pre-employment assessment tools and tests available, you can:

  • Improve the accuracy and efficiency of your hiring process.
  • Identify top talent with the right skills and cultural fit.
  • Reduce the risk of bad hires.
  • Enhance the candidate experience by providing a clear and objective evaluation process.

This guide will provide you with valuable insights into the different types of pre-employment assessments available and highlight some of the best tools, to help you optimize your hiring process for 2024.

Why pre-employment assessments are key in hiring

While resumes and interviews offer valuable insights, they can be subjective and susceptible to bias. Pre-employment assessments provide a standardized and objective way to evaluate candidates, offering several key benefits:

  • Improved decision-making:

    By measuring specific skills and knowledge, assessments help you identify candidates who possess the qualifications necessary for the job.

  • Reduced bias:

    Standardized assessments mitigate the risks of unconscious bias that can creep into traditional interview processes.

  • Increased efficiency:

    Assessments can streamline the initial screening process, allowing you to focus on the most promising candidates.

  • Enhanced candidate experience:

    When used effectively, assessments can provide candidates with a clear understanding of the required skills and a fair chance to showcase their abilities.

Types of pre-employment assessments

There are various types of pre-employment assessments available, each catering to different needs and objectives. Here's an overview of some common types:

1. Skill Assessments:

  • Technical Skills: These assessments evaluate specific technical skills and knowledge relevant to the job role, such as programming languages, software proficiency, or industry-specific expertise. HackerEarth offers a wide range of validated technical skill assessments covering various programming languages, frameworks, and technologies.
  • Soft Skills: These employment assessments measure non-technical skills like communication, problem-solving, teamwork, and critical thinking, crucial for success in any role.

2. Personality Assessments:

These employment assessments can provide insights into a candidate's personality traits, work style, and cultural fit within your organization.

3. Cognitive Ability Tests:

These tests measure a candidate's general mental abilities, such as reasoning, problem-solving, and learning potential.

4. Integrity Assessments:

These employment assessments aim to identify potential risks associated with a candidate's honesty, work ethic, and compliance with company policies.

By understanding the different types of assessments and their applications, you can choose the ones that best align with your specific hiring needs and ensure you hire the most qualified and suitable candidates for your organization.

Leading employment assessment tools and tests in 2024

Choosing the right pre-employment assessment tool depends on your specific needs and budget. Here's a curated list of some of the top pre-employment assessment tools and tests available in 2024, with brief overviews:

  • HackerEarth:

    A comprehensive platform offering a wide range of validated skill assessments in various programming languages, frameworks, and technologies. It also allows for the creation of custom assessments and integrates seamlessly with various recruitment platforms.

  • SHL:

    Provides a broad selection of assessments, including skill tests, personality assessments, and cognitive ability tests. They offer customizable solutions and cater to various industries.

  • Pymetrics:

    Utilizes gamified assessments to evaluate cognitive skills, personality traits, and cultural fit. They offer a data-driven approach and emphasize candidate experience.

  • Wonderlic:

    Offers a variety of assessments, including the Wonderlic Personnel Test, which measures general cognitive ability. They also provide aptitude and personality assessments.

  • Harver:

    An assessment platform focusing on candidate experience with video interviews, gamified assessments, and skills tests. They offer pre-built assessments and customization options.

Remember: This list is not exhaustive, and further research is crucial to identify the tool that aligns best with your specific needs and budget. Consider factors like the types of assessments offered, pricing models, integrations with your existing HR systems, and user experience when making your decision.

Choosing the right pre-employment assessment tool

Instead of full individual tool reviews, consider focusing on 2–3 key platforms. For each platform, explore:

  • Target audience: Who are their assessments best suited for (e.g., technical roles, specific industries)?
  • Types of assessments offered: Briefly list the available assessment categories (e.g., technical skills, soft skills, personality).
  • Key features: Highlight unique functionalities like gamification, custom assessment creation, or seamless integrations.
  • Effectiveness: Briefly mention the platform's approach to assessment validation and reliability.
  • User experience: Consider including user reviews or ratings where available.

Comparative analysis of assessment options

Instead of a comprehensive comparison, consider focusing on specific use cases:

  • Technical skills assessment:

    Compare HackerEarth and Wonderlic based on their technical skill assessment options, focusing on the variety of languages/technologies covered and assessment formats.

  • Soft skills and personality assessment:

    Compare SHL and Pymetrics based on their approaches to evaluating soft skills and personality traits, highlighting any unique features like gamification or data-driven insights.

  • Candidate experience:

    Compare Harver and Wonderlic based on their focus on candidate experience, mentioning features like video interviews or gamified assessments.

Additional tips:

  • Encourage readers to visit the platforms' official websites for detailed features and pricing information.
  • Include links to reputable third-party review sites where users share their experiences with various tools.

Best practices for using pre-employment assessment tools

Integrating pre-employment assessments effectively requires careful planning and execution. Here are some best practices to follow:

  • Define your assessment goals:

    Clearly identify what you aim to achieve with assessments. Are you targeting specific skills, personality traits, or cultural fit?

  • Choose the right assessments:

    Select tools that align with your defined goals and the specific requirements of the open position.

  • Set clear expectations:

    Communicate the purpose and format of the assessments to candidates in advance, ensuring transparency and building trust.

  • Integrate seamlessly:

    Ensure your chosen assessment tool integrates smoothly with your existing HR systems and recruitment workflow.

  • Train your team:

    Equip your hiring managers and HR team with the knowledge and skills to interpret assessment results effectively.

Interpreting assessment results accurately

Assessment results offer valuable data points, but interpreting them accurately is crucial for making informed hiring decisions. Here are some key considerations:

  • Use results as one data point:

    Consider assessment results alongside other information, such as resumes, interviews, and references, for a holistic view of the candidate.

  • Understand score limitations:

    Don't solely rely on raw scores. Understand the assessment's validity and reliability and the potential for cultural bias or individual test anxiety.

  • Look for patterns and trends:

    Analyze results across different assessments and identify consistent patterns that align with your desired candidate profile.

  • Focus on potential, not guarantees:

    Assessments indicate potential, not guarantees of success. Use them alongside other evaluation methods to make well-rounded hiring decisions.

Choosing the right pre-employment assessment tools

Selecting the most suitable pre-employment assessment tool requires careful consideration of your organization's specific needs. Here are some key factors to guide your decision:

  • Industry and role requirements:

    Different industries and roles demand varying skill sets and qualities. Choose assessments that target the specific skills and knowledge relevant to your open positions.

  • Company culture and values:

    Align your assessments with your company culture and values. For example, if collaboration is crucial, look for assessments that evaluate teamwork and communication skills.

  • Candidate experience:

    Prioritize tools that provide a positive and smooth experience for candidates. This can enhance your employer brand and attract top talent.

Budget and accessibility considerations

Budget and accessibility are essential factors when choosing pre-employment assessments:

  • Budget:

    Assessment tools come with varying pricing models (subscriptions, pay-per-use, etc.). Choose a tool that aligns with your budget and offers the functionalities you need.

  • Accessibility:

    Ensure the chosen assessment is accessible to all candidates, considering factors like language options, disability accommodations, and internet access requirements.

Additional Tips:

  • Free trials and demos: Utilize free trials or demos offered by assessment platforms to experience their functionalities firsthand.
  • Consult with HR professionals: Seek guidance from HR professionals or recruitment specialists with expertise in pre-employment assessments.
  • Read user reviews and comparisons: Gain insights from other employers who use various assessment tools.

By carefully considering these factors, you can select the pre-employment assessment tool that best aligns with your organizational needs, budget, and commitment to an inclusive hiring process.

Remember, pre-employment assessments are valuable tools, but they should not be the sole factor in your hiring decisions. Use them alongside other evaluation methods and prioritize building a fair and inclusive hiring process that attracts and retains top talent.

Future trends in pre-employment assessments

The pre-employment assessment landscape is constantly evolving, with innovative technologies and practices emerging. Here are some potential future trends to watch:

  • Artificial intelligence (AI):

    AI-powered assessments can analyze candidate responses, written work, and even resumes, using natural language processing to extract relevant insights and identify potential candidates.

  • Adaptive testing:

    These assessments adjust the difficulty level of questions based on the candidate's performance, providing a more efficient and personalized evaluation.

  • Micro-assessments:

    Short, focused assessments delivered through mobile devices can assess specific skills or knowledge on-the-go, streamlining the screening process.

  • Gamification:

    Engaging and interactive game-based elements can make the assessment experience more engaging and assess skills in a realistic and dynamic way.

Conclusion

Pre-employment assessments, when used thoughtfully and ethically, can be a powerful tool to optimize your hiring process, identify top talent, and build a successful workforce for your organization. By understanding the different types of assessments available, exploring top-rated tools like HackerEarth, and staying informed about emerging trends, you can make informed decisions that enhance your ability to attract, evaluate, and hire the best candidates for the future.

Tech Layoffs: What To Expect In 2024

Layoffs in the IT industry are becoming more widespread as companies fight to remain competitive in a fast-changing market; many turn to layoffs as a cost-cutting measure. Last year, 1,000 companies including big tech giants and startups, laid off over two lakhs of employees. But first, what are layoffs in the tech business, and how do they impact the industry?

Tech layoffs are the termination of employment for some employees by a technology company. It might happen for various reasons, including financial challenges, market conditions, firm reorganization, or the after-effects of a pandemic. While layoffs are not unique to the IT industry, they are becoming more common as companies look for methods to cut costs while remaining competitive.

The consequences of layoffs in technology may be catastrophic for employees who lose their jobs and the firms forced to make these difficult decisions. Layoffs can result in the loss of skill and expertise and a drop in employee morale and productivity. However, they may be required for businesses to stay afloat in a fast-changing market.

This article will examine the reasons for layoffs in the technology industry, their influence on the industry, and what may be done to reduce their negative impacts. We will also look at the various methods for tracking tech layoffs.

What are tech layoffs?

The term "tech layoff" describes the termination of employees by an organization in the technology industry. A company might do this as part of a restructuring during hard economic times.

In recent times, the tech industry has witnessed a wave of significant layoffs, affecting some of the world’s leading technology companies, including Amazon, Microsoft, Meta (formerly Facebook), Apple, Cisco, SAP, and Sony. These layoffs are a reflection of the broader economic challenges and market adjustments facing the sector, including factors like slowing revenue growth, global economic uncertainties, and the need to streamline operations for efficiency.

Each of these tech giants has announced job cuts for various reasons, though common themes include restructuring efforts to stay competitive and agile, responding to over-hiring during the pandemic when demand for tech services surged, and preparing for a potentially tough economic climate ahead. Despite their dominant positions in the market, these companies are not immune to the economic cycles and technological shifts that influence operational and strategic decisions, including workforce adjustments.

This trend of layoffs in the tech industry underscores the volatile nature of the tech sector, which is often at the mercy of rapid changes in technology, consumer preferences, and the global economy. It also highlights the importance of adaptability and resilience for companies and employees alike in navigating the uncertainties of the tech landscape.

Causes for layoffs in the tech industry

Why are tech employees suffering so much?

Yes, the market is always uncertain, but why resort to tech layoffs?

Various factors cause tech layoffs, including company strategy changes, market shifts, or financial difficulties. Companies may lay off employees if they need help to generate revenue, shift their focus to new products or services, or automate certain jobs.

In addition, some common reasons could be:

Financial struggles

Currently, the state of the global market is uncertain due to economic recession, ongoing war, and other related phenomena. If a company is experiencing financial difficulties, only sticking to pay cuts may not be helpful—it may need to reduce its workforce to cut costs.


Also, read: 6 Steps To Create A Detailed Recruiting Budget (Template Included)


Changes in demand

The tech industry is constantly evolving, and companies would have to adjust their workforce to meet changing market conditions. For instance, companies are adopting remote work culture, which surely affects on-premises activity, and companies could do away with some number of tech employees at the backend.

Restructuring

Companies may also lay off employees as part of a greater restructuring effort, such as spinning off a division or consolidating operations.

Automation

With the advancement in technology and automation, some jobs previously done by human labor may be replaced by machines, resulting in layoffs.

Mergers and acquisitions

When two companies merge, there is often overlap in their operations, leading to layoffs as the new company looks to streamline its workforce.

But it's worth noting that layoffs are not exclusive to the tech industry and can happen in any industry due to uncertainty in the market.

Will layoffs increase in 2024?

It is challenging to estimate the rise or fall of layoffs. The overall state of the economy, the health of certain industries, and the performance of individual companies will play a role in deciding the degree of layoffs in any given year.

But it is also seen that, in the first 15 days of this year, 91 organizations laid off over 24,000 tech workers, and over 1,000 corporations cut down more than 150,000 workers in 2022, according to an Economic Times article.

The COVID-19 pandemic caused a huge economic slowdown and forced several businesses to downsize their employees. However, some businesses rehired or expanded their personnel when the world began to recover.

So, given the current level of economic uncertainty, predicting how the situation will unfold is difficult.


Also, read: 4 Images That Show What Developers Think Of Layoffs In Tech


What types of companies are prone to tech layoffs?

2023 Round Up Of Layoffs In Big Tech

Tech layoffs can occur in organizations of all sizes and various areas.

Following are some examples of companies that have experienced tech layoffs in the past:

Large tech firms

Companies such as IBM, Microsoft, Twitter, Better.com, Alibaba, and HP have all experienced layoffs in recent years as part of restructuring initiatives or cost-cutting measures.

Market scenarios are still being determined after Elon Musk's decision to lay off employees. Along with tech giants, some smaller companies and startups have also been affected by layoffs.

Startups

Because they frequently work with limited resources, startups may be forced to lay off staff if they cannot get further funding or need to pivot due to market downfall.

Small and medium-sized businesses

Small and medium-sized businesses face layoffs due to high competition or if the products/services they offer are no longer in demand.

Companies in certain industries

Some sectors of the technological industry, such as the semiconductor industry or automotive industry, may be more prone to layoffs than others.

Companies that lean on government funding

Companies that rely significantly on government contracts may face layoffs if the government cuts technology spending or contracts are not renewed.

How to track tech layoffs?

You can’t stop tech company layoffs, but you should be keeping track of them. We, HR professionals and recruiters, can also lend a helping hand in these tough times by circulating “layoff lists” across social media sites like LinkedIn and Twitter to help people land jobs quicker. Firefish Software put together a master list of sources to find fresh talent during the layoff period.

Because not all layoffs are publicly disclosed, tracking tech industry layoffs can be challenging, and some may go undetected. There are several ways to keep track of tech industry layoffs:

Use tech layoffs tracker

Layoff trackers like thelayoff.com and layoffs.fyi provide up-to-date information on layoffs.

In addition, they aid in identifying trends in layoffs within the tech industry. It can reveal which industries are seeing the most layoffs and which companies are the most affected.

Companies can use layoff trackers as an early warning system and compare their performance to that of other companies in their field.

News articles

Because many news sites cover tech layoffs as they happen, keeping a watch on technology sector stories can provide insight into which organizations are laying off employees and how many individuals have been affected.

Social media

Organizations and employees frequently publish information about layoffs in tech on social media platforms; thus, monitoring companies' social media accounts or following key hashtags can provide real-time updates regarding layoffs.

Online forums and communities

There are online forums and communities dedicated to discussing tech industry news, and they can be an excellent source of layoff information.

Government reports

Government agencies such as the Bureau of Labor Statistics (BLS) publish data on layoffs and unemployment, which can provide a more comprehensive picture of the technology industry's status.

How do companies reduce tech layoffs?

Layoffs in tech are hard – for the employee who is losing their job, the recruiter or HR professional who is tasked with informing them, and the company itself. So, how can we aim to avoid layoffs? Here are some ways to minimize resorting to letting people go:

Salary reductions

Instead of laying off employees, businesses can lower the salaries or wages of all employees. It can be accomplished by instituting compensation cuts or salary freezes.

Implementing a hiring freeze

Businesses can halt employing new personnel to cut costs. It can be a short-term solution until the company's financial situation improves.


Also, read: What Recruiters Can Focus On During A Tech Hiring Freeze


Non-essential expense reduction

Businesses might search for ways to cut or remove non-essential expenses such as travel, training, and office expenses.

Reducing working hours

Companies can reduce employee working hours to save money, such as implementing a four-day workweek or a shorter workday.

These options may not always be viable and may have their problems, but before laying off, a company owes it to its people to consider every other alternative, and formulate the best solution.

Tech layoffs to bleed into this year

While we do not know whether this trend will continue or subside during 2023, we do know one thing. We have to be prepared for a wave of layoffs that is still yet to hit. As of last month, Layoffs.fyi had already tracked 170+ companies conducting 55,970 layoffs in 2023.

So recruiters, let’s join arms, distribute those layoff lists like there’s no tomorrow, and help all those in need of a job! :)

What is Headhunting In Recruitment?: Types & How Does It Work?

In today’s fast-paced world, recruiting talent has become increasingly complicated. Technological advancements, high workforce expectations and a highly competitive market have pushed recruitment agencies to adopt innovative strategies for recruiting various types of talent. This article aims to explore one such recruitment strategy – headhunting.

What is Headhunting in recruitment?

In headhunting, companies or recruitment agencies identify, engage and hire highly skilled professionals to fill top positions in the respective companies. It is different from the traditional process in which candidates looking for job opportunities approach companies or recruitment agencies. In headhunting, executive headhunters, as recruiters are referred to, approach prospective candidates with the hiring company’s requirements and wait for them to respond. Executive headhunters generally look for passive candidates, those who work at crucial positions and are not on the lookout for new work opportunities. Besides, executive headhunters focus on filling critical, senior-level positions indispensable to companies. Depending on the nature of the operation, headhunting has three types. They are described later in this article. Before we move on to understand the types of headhunting, here is how the traditional recruitment process and headhunting are different.

How do headhunting and traditional recruitment differ from each other?

Headhunting is a type of recruitment process in which top-level managers and executives in similar positions are hired. Since these professionals are not on the lookout for jobs, headhunters have to thoroughly understand the hiring companies’ requirements and study the work profiles of potential candidates before creating a list.

In the traditional approach, there is a long list of candidates applying for jobs online and offline. Candidates approach recruiters for jobs. Apart from this primary difference, there are other factors that define the difference between these two schools of recruitment.

AspectHeadhuntingTraditional RecruitmentCandidate TypePrimarily passive candidateActive job seekersApproachFocused on specific high-level rolesBroader; includes various levelsScopeproactive outreachReactive: candidates applyCostGenerally more expensive due to expertise requiredTypically lower costsControlManaged by headhuntersManaged internally by HR teams

All the above parameters will help you to understand how headhunting differs from traditional recruitment methods, better.

Types of headhunting in recruitment

Direct headhunting: In direct recruitment, hiring teams reach out to potential candidates through personal communication. Companies conduct direct headhunting in-house, without outsourcing the process to hiring recruitment agencies. Very few businesses conduct this type of recruitment for top jobs as it involves extensive screening across networks outside the company’s expanse.

Indirect headhunting: This method involves recruiters getting in touch with their prospective candidates through indirect modes of communication such as email and phone calls. Indirect headhunting is less intrusive and allows candidates to respond at their convenience.Third-party recruitment: Companies approach external recruitment agencies or executive headhunters to recruit highly skilled professionals for top positions. This method often leverages the company’s extensive contact network and expertise in niche industries.

How does headhunting work?

Finding highly skilled professionals to fill critical positions can be tricky if there is no system for it. Expert executive headhunters employ recruitment software to conduct headhunting efficiently as it facilitates a seamless recruitment process for executive headhunters. Most software is AI-powered and expedites processes like candidate sourcing, interactions with prospective professionals and upkeep of communication history. This makes the process of executive search in recruitment a little bit easier. Apart from using software to recruit executives, here are the various stages of finding high-calibre executives through headhunting.

Identifying the role

Once there is a vacancy for a top job, one of the top executives like a CEO, director or the head of the company, reach out to the concerned personnel with their requirements. Depending on how large a company is, they may choose to headhunt with the help of an external recruiting agency or conduct it in-house. Generally, the task is assigned to external recruitment agencies specializing in headhunting. Executive headhunters possess a database of highly qualified professionals who work in crucial positions in some of the best companies. This makes them the top choice of conglomerates looking to hire some of the best talents in the industry.

Defining the job

Once an executive headhunter or a recruiting agency is finalized, companies conduct meetings to discuss the nature of the role, how the company works, the management hierarchy among other important aspects of the job. Headhunters are expected to understand these points thoroughly and establish a clear understanding of their expectations and goals.

Candidate identification and sourcing

Headhunters analyse and understand the requirements of their clients and begin creating a pool of suitable candidates from their database. The professionals are shortlisted after conducting extensive research of job profiles, number of years of industry experience, professional networks and online platforms.

Approaching candidates

Once the potential candidates have been identified and shortlisted, headhunters move on to get in touch with them discreetly through various communication channels. As such candidates are already working at top level positions at other companies, executive headhunters have to be low-key while doing so.

Assessment and Evaluation

In this next step, extensive screening and evaluation of candidates is conducted to determine their suitability for the advertised position.

Interviews and negotiations

Compensation is a major topic of discussion among recruiters and prospective candidates. A lot of deliberation and negotiation goes on between the hiring organization and the selected executives which is facilitated by the headhunters.

Finalizing the hire

Things come to a close once the suitable candidates accept the job offer. On accepting the offer letter, headhunters help finalize the hiring process to ensure a smooth transition.

The steps listed above form the blueprint for a typical headhunting process. Headhunting has been crucial in helping companies hire the right people for crucial positions that come with great responsibility. However, all systems have a set of challenges no matter how perfect their working algorithm is. Here are a few challenges that talent acquisition agencies face while headhunting.

Common challenges in headhunting

Despite its advantages, headhunting also presents certain challenges:

Cost Implications: Engaging headhunters can be more expensive than traditional recruitment methods due to their specialized skills and services.

Time-Consuming Process: While headhunting can be efficient, finding the right candidate for senior positions may still take time due to thorough evaluation processes.

Market Competition: The competition for top talent is fierce; organizations must present compelling offers to attract passive candidates away from their current roles.

Although the above mentioned factors can pose challenges in the headhunting process, there are more upsides than there are downsides to it. Here is how headhunting has helped revolutionize the recruitment of high-profile candidates.

Advantages of Headhunting

Headhunting offers several advantages over traditional recruitment methods:

Access to Passive Candidates: By targeting individuals who are not actively seeking new employment, organisations can access a broader pool of highly skilled professionals.

Confidentiality: The discreet nature of headhunting protects both candidates’ current employment situations and the hiring organisation’s strategic interests.

Customized Search: Headhunters tailor their search based on the specific needs of the organization, ensuring a better fit between candidates and company culture.

Industry Expertise: Many headhunters specialise in particular sectors, providing valuable insights into market dynamics and candidate qualifications.

Conclusion

Although headhunting can be costly and time-consuming, it is one of the most effective ways of finding good candidates for top jobs. Executive headhunters face several challenges maintaining the g discreetness while getting in touch with prospective clients. As organizations navigate increasingly competitive markets, understanding the nuances of headhunting becomes vital for effective recruitment strategies. To keep up with the technological advancements, it is better to optimise your hiring process by employing online recruitment software like HackerEarth, which enables companies to conduct multiple interviews and evaluation tests online, thus improving candidate experience. By collaborating with skilled headhunters who possess industry expertise and insights into market trends, companies can enhance their chances of securing high-caliber professionals who drive success in their respective fields.

View all