Tech Tutorials

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Scaling database with Django and HAProxy

MySQL – Primary data store

At HackerEarth, we use MySQL database as the primary data store. We have experimented with a few NoSQL databases on the way, but the results have been largely unsatisfactory. The distributed databases like MongoDB or CouchDB aren't very scalable or stable. Right now, our status monitoring services use RethinkDB for storing the data in JSON format. That's all about using NoSQL database for now.

With the growing amount of data and number of requests every second, it turns out that the database becomes a major bottleneck to scale the application dynamically. At this point if you are thinking that there are mythical (cloud) providers who can handle the growing need of your application, you couldn't be more wrong. To make matters worse, you can't spin a new database whenever you want to just like you do with your frontend servers. Achieving horizontal scalability at all levels requires massive re-architecture of the system while being completely transparent to the end user. This is what a part of our team has focused on in the last few months, resulting in high uptime and availability.

It was becoming difficult for the master (and only) MySQL database to handle the heavy load. We thought we will delay any scalability at this level till the single database could handle the load. We would work on other high priority tasks instead. But that wasn't to be, and we experienced some down time. After that we did a rearchitecture of our application, sharded the database, wrote database routers and wrappers on top of django ORM, put HAProxy load balancer infront of the MySQL databases, and refactored our codebase to optimize it significantly.

The image below shows a part of the architecture we have at HackerEarth. Many other components have been omitted for simplicity.

Database slaves and router

The idea was to create read replicas and route the write queries to the master database and read queries to slave (read replica) databases. But that was not simple either. We couldn't and wouldn't want to route all the read queries to slaves. There were some read queries which couldn't afford stale data, which comes as a part of database replication. Though stale data might be the order of just a few seconds, these small number of read queries couldn't even afford that. The first database router was simple:
class MasterSlaveRouter(object):

"""
Represents the router for database lookup.
"""
def __init__(self):
if settings.LOCAL:
self._SLAVES = []
else:
self._SLAVES = SLAVES

def db_for_read(self, model, **hints):
"""
Reads go to default for now.
"""
return 'default'

def db_for_write(self, model, **hints):
"""
Writes always go to default.
"""
return 'default'

def allow_relation(self, obj1, obj2, **hints):
"""
Relations between objects are allowed if both objects are
in the default/slave pool.
"""
db_list = ('default',)
for slave in zip(self._SLAVES):
db_list += slave

if obj1._state.db in db_list and obj2._state.db in db_list:
return True
return None

def allow_migrate(self, db, model):
return True

All the write and read queries go to the master database, which you might think is weird here. Instead, we wrote getfromslave(), filterfromslave(), getobjector404fromslave(), getlistor404fromslave(), etc. as part of django ORM in our custom managers to read from slave. So whenever we know we can read from slaves, we call one of these functions. This was a sacrifice made for those small number of read queries which couldn't afford the stale data. Custom database manager to fetch data from slave:
# proxy_slave_X is the HAProxy endpoint, which does load balancing

# over all the databases.
SLAVES = ['proxy_slave_1', 'proxy_slave_2']

def get_slave():
"""
Returns a slave randomly from the list.
"""
if settings.LOCAL:
db_list = []
else:
db_list = SLAVES

return random.choice(db_list)

class BaseManager(models.Manager):
# Wrappers to read from slave databases.
def get_from_slave(self, *args, **kwargs):
self._db = get_slave()
return super(BaseManager, self).get_query_set().get(*args, **kwargs)

def filter_from_slave(self, *args, **kwargs):
self._db = get_slave()
return super(BaseManager, self).get_query_set().filter(
*args, **kwargs).exclude(Q(hidden=True) | Q(trashed=True))

HAProxy for load balancing

Now there could me many slaves at a time. One option was to update the database configuration in settings whenever we added/removed a slave. But that was very cumbersome and inefficient. A better way was to put a HAProxy load balancer in front of all the databases and let it detect which one is up or down and route the read queries according to that. This would mean never editing the database configuration in our codebase — just what we wanted. A snippet of /etc/haproxy/haproxy.cfg:
listen mysql *:3305

mode tcp
balance roundrobin
option mysql-check user haproxyuser
option log-health-checks
server db00 db00.xxxxx.yyyyyyyyyy:3306 check port 3306 inter 1000
server db01 db00.xxxxx.yyyyyyyyyy:3306 check port 3306 inter 1000
server db02 db00.xxxxx.yyyyyyyyyy:3306 check port 3306 inter 1000

The configuration for the slave in settings now looked like this:
DATABASES = {

'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'db_name',
'USER': 'username',
'PASSWORD': 'password',
'HOST': 'db00.xxxxx.yyyyyyyyyy',
'PORT': '3306',
},
'proxy_slave_1': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'db_name',
'USER': 'username',
'PASSWORD': 'password',
'HOST': '127.0.0.1',
'PORT': '3305',
},
'analytics': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'db_name',
'USER': 'username',
'PASSWORD': 'password',
'HOST': 'db-analytics.xxxxx.yyyyyyyyyy',
'PORT': '3306',
},
}

But there is a caveat here too. If you spin off a new server with the HAproxy configuration containing some endpoints which don't exist, HAproxy will throw an error and it won't start, making the slave useless. It turns out there is no easy solution to this, and haproxy.cfg should contain existing server endpoints while initializing. The solution then was to let the webserver update its HAproxy configuration from a central location whenever it starts. We wrote a simple script in fabric to do this. Besides, the webserver already used to update its binary when the spin off is from an old image.

Database sharding

Next, we sharded the database. We created another database — analytics. It stores all the computed data, and it forms a major part of read queries. All the queries to the analytics database are routed using the following router:
class AnalyticsRouter(object):

"""
Represents the router for analytics database lookup.
"""
def __init__(self):
if settings.LOCAL:
self._SLAVES = []
self._db = 'default'
else:
self._SLAVES = []
self._db = 'analytics'

def db_for_read(self, model, **hints):
"""
All reads go to analytics for now.
"""
if model._meta.app_label == 'analytics':
return self._db
else:
return None

def db_for_write(self, model, **hints):
"""
Writes always go to analytics.
"""
if model._meta.app_label == 'analytics':
return self._db
else:
return None

def allow_relation(self, obj1, obj2, **hints):
"""
Relations between objects are allowed if both objects are
in the default/slave pool.
"""

if obj1._meta.app_label == 'analytics' or \
obj2._meta.app_label == 'analytics':
return True
else:
return None

def allow_migrate(self, db, model):
if db == self._db:
return model._meta.app_label == 'analytics'
elif model._meta.app_label == 'analytics':
return False
else:
return None

To enable the two routers, we need to add them in our global settings:
DATABASE_ROUTERS = ['core.routers.AnalyticsRouter', 'core.routers.MasterSlaveRouter']


Here the order of routers is important. All the queries for analytics are routed to the analytics database and all the other queries are routed to the master database or their slaves according the nature of queries. For now, we have not put slaves for analytics database but as the usage grows that will be fairly straightforward to do. At the end, we had an architecture where we could spin off new read replicas and route the queries fairly simply and had a high performance load-balancer in front of the databases. All this has resulted in a much higher uptime and stability in our application, and we could focus more on what we love to do — building products for programmers. We already had an automated deployment system in place, which made the experimentation easier and enabled us to test everything thoroughly. The refactoring and optimization that we did in codebase and architecture also reduced the server count by more than two times. This has been a huge win for us, and we are now focusing on rolling out exciting products in the next few weeks. Stay tuned!

I would love to know how others have solved similar problems. Do give suggestions and point out potential quirks.

P.S. You might be interested in The HackerEarth Data Challenge that we are running.

Follow me @vivekprakash. Write to me at vivek@hackerearth.com.

This post was originally written for the HackerEarth Engineering blog by Vivek Prakash.

Starting with Python

Thinking about starting with Python but unsure where to begin? Maybe you’re wondering if your current system setup is enough to get started.

Before choosing where to code, ask yourself two essential questions:

  • What environment are you most comfortable with—Mac, Windows, or Linux?
  • What is your end goal—building desktop apps, web apps, or something else?

Let’s look at the available options from these perspectives:

Linux

Python was originally developed for Linux and runs seamlessly on it. Working with multiple Python versions is easier due to PEP 394.

  • Ubuntu: Python 2.7 and 3.5 are available by default on Ubuntu 16.04. For older versions, refer to this guide to install newer versions.
  • Arch: Comes with Python 3.5 by default, accessible via the python command.
  • RedHat/CentOS: Ships with Python 2.7. For minimal Unix distributions, Python can be compiled from source.

Common Editors: Vim and Emacs are popular in Unix/Linux environments.

Windows

Download Python from the official website. After installation, set the system path to access Python via the command line.

Thanks to Steve Dower’s efforts, Python on Windows now supports pip and virtualenv very well. Multiple Python versions can be handled using batch scripts. Refer to this article for more info.

Popular Editor: PyCharm

Mac

Mac OS X 10.8+ comes with Python 2.7 pre-installed. GUI execution may have some quirks but command-line execution and editing with Vim or Emacs works well.

Anaconda

If you're into data science, Anaconda provides a streamlined Python setup with “conda” for managing packages and environments.

PyPy

PyPy is a fast alternative to CPython, using a Just-in-Time compiler. It supports various systems and is great for performance-heavy applications.

Starting the Python Interpreter

To start coding, install Python and open a terminal. Type python and press Enter. You’ll see a prompt like this:

Python prompt

At the prompt, type:

print("Hello World.")
Print Hello World

Congratulations! You’ve written your first Python program.

Python on Raspberry Pi and Microcontrollers

If you're into hardware, explore MicroPython or PyMite.

Python is the primary language for Raspberry Pi. Example: Check if a button is pressed using Python on Raspberry Pi. See example here.

Whichever system you use—Windows, Linux, or Mac—Python has you covered.

References and Further Reading:

Continuous Deployment System

This is one of the coolest and most important things we recently built at HackerEarth.

What's so cool about it? Just have a little patience, you will soon find out. But make sure you read till the end :)

I hope to provide valuable insights into the implementation of a Continuous Deployment System(CDS).

At HackerEarth, we iterate over our product quickly and roll out new features as soon as they are production ready. In the last two weeks, we deployed 100+ commits in production, and a major release comprising over 150+ commits is scheduled for launch within a few days. Those commits consist of changes to backend app, website, static files, database, and so on.

We have over a dozen different types of servers running, for example, webserver, code-checker server, log server, wiki server, realtime server, NoSQL server, etc. All of them are running on multiple EC2 instances at any point in time. Our codebase is still tightly integrated as one single project with many different components required for each server. When there are changes to the codebase, you need to update all the related dedicated servers and components when deploying in production. Doing that manually would have just driven us crazy and would have been a total waste of time!

Look at the table of commits deployed on a single day.


And with such speed, we needed an automated deployment system along with automated testing. Our implementation of CDS helped the team roll out features in production with just a single command: git push origin master. Also, another reason to use CDS is that we are trying to automate everything, and I see us going in right direction.

CDS Model

The process begins with the developer pushing a bunch of commits from his master branch to a remote repository, which in our case is set up on Bitbucket. We have set up a post hook on Bitbucket, so as soon as Bitbucket receives commits from the developer, it generates a payload(containing information about commits) and sends it to the toolchain server.

The toolchain server backend receives the payload and filters commits based on the branch and neglects any commit that is not from the master branch or of the type merge commit.


    def filter_commits(branch=settings.MASTER_BRANCH, all_commits=[]):

"""
Filter commits by branch
"""

commits = []

# Reverse commits list so that we have branch info in first commit.
all_commits.reverse()

for commit in all_commits:
if commit['branch'] is None:
parents = commit['parents']
# Ignore merge commits for now
if parents.__len__() > 1:
# It's a merge commit and
# We don't know what to do yet!
continue

# Check if we just stored the child commit.
for lcommit in commits:
if commit['node'] in lcommit['parents']:
commit['branch'] = branch
commits.append(commit)
break
elif commit['branch'] == branch:
commits.append(commit)

# Restore commits order
commits.reverse()
return commits


Filtered commits are then grouped intelligently using a file dependency algorithm.
    def group_commits(commits):

"""
Creates groups of commits based on file dependency algorithm
"""


# List of groups
# Each group is a list of commits
# In list, commits will be in the order they arrived
groups_of_commits = []

# Visited commits
visited = {}

# Store order of commits in which they arrived
# Will be used later to sort commits inside each group
for i, commit in enumerate(commits):
commit['index'] = i

# Loop over commits
for commit in commits:
queue = deque()

# This may be one of the group in groups_of commits,
# if not empty in the end
commits_group = []

commit_visited = visited.get(commit['raw_node'], None)
if not commit_visited:
queue.append(commit)

while len(queue):
c = queue.popleft()
visited[c['raw_node']] = True
commits_group.append(c)
dependent_commits = get_dependent_commits_of(c, commits)

for dep_commit in dependent_commits:
commit_visited = visited.get(dep_commit['raw_node'], None)
if not commit_visited:
queue.append(dep_commit)

if len(commits_group)>0:
# Remove duplicates
nodes = []
commits_group_new = []
for commit in commits_group:
if commit['node'] not in nodes:
nodes.append(commit['node'])
commits_group_new.append(commit)
commits_group = commits_group_new

# Sort list using index key set earlier
commits_group_sorted = sorted(commits_group, key= lambda
k: k['index'])
groups_of_commits.append(commits_group_sorted)

return groups_of_commits


The top commit of each group is sent for testing to the integration test server via rabbitmq. First, I wrote code which sent each commit for testing, but it was too slow. So Vivek suggested that I group commits from payload and run a test on the top commit of each group, which drastically reduced number of times tests are run. Integration tests are run on the integration test server. There is a separate branch called test on which tests are run. Commits are cherry-picked from master onto test branch. Integration test server is a simulated setup to replicate production behavior. If tests are passed, then commits are put in release queue from where they are released in production. Otherwise, the test branch is rolled back to a previous stable commit and clean-up actions are performed, including notifying the developer whose commits failed the tests.

Git Branch Model

We have been using three branches — master, test, and release. In the Master, the developer pushes the code. This branch can be unstable. Test branch is for the integration test server and release branch is for the production server. Release and test branches move parallel, and they are always stable. As we write more tests, the uncertainty of a bad commit being deployed to production will reduce exponentially.

Django Models

Each commit(or revision) is stored in the database. This data is helpful in many circumstances like finding previously failed commits, relating commits to each other using file dependency algorithm, monitoring deployment, etc. Following are the Django models used:* Revision- commithash, commitauthor, etc. * Revision Status- revisionid, testpassed, deployedonproduction, etc. * Revision Files- revisionid, filepath * Revision Dependencies. When the top commit of each group is passed to the integration test server, we first find its dependencies, that is, previously failed commits using the file dependency algorithm, and save it in the Revision Dependencies model so that we can directly query from the database the next time.
def get_dependencies(revision_obj):

dependencies = set()
visited = {}

queue = deque()
filter_id = revision_obj.id
queue.append(revision_obj)

while len(queue):
rev = queue.popleft()
visited[rev.id] = True
dependencies.add(rev)
dependent_revs = get_all_dependent_revs(rev, filter_id)

for rev in dependent_revs:
r_visited = visited.get(rev.id, None)
if not r_visited:
queue.append(rev)
#remove revision from it's own dependecies set.
#makes sense, right?
dependencies.remove(revision_obj)
dependencies = list(dependencies)
dependencies = sorted(dependencies, key=attrgetter('id'))
return dependencies

def get_all_dependent_revs(rev, filter_id):
deps = rev.health_dependency.all()
if len(deps)>0:
return deps

files_in_rev = rev.files.all()
files_in_rev = [f.filepath for f in files_in_rev]

reqd_revisions = Revision.objects.filter(files__filepath__in=files_in_rev, id__lt=filter_id, status__health_status=False)
return reqd_revisions

As we saw earlier in the Overview section, these commits are then cherry-picked onto the test branch from the master branch, and the process continues.

Deploying to Production

Commits that passed integration tests are now ready to be deployed. There are a few things to consider when deploying code to production, such as restarting webserver, deploying static files, running database migrations, etc. The toolchain code intelligently decides which servers to restart, whether to collect static files or run database migrations, and which servers to deploy on based on what changes were done in the commits. You might have noticed we do all this on the basis of types and categories of files changed/modified/deleted in the commits to be released. You might also have noted that we control deployment to production and test servers from the toolchain server (that's the one which receives payload from bitbucket). We use fabric to achieve this. A great tool indeed for executing remote administrative tasks!
from fabric.api import run, env, task, execute, parallel, sudo

@task
def deploy_prod(config, **kwargs):
"""
Deploy code on production servers.
"""

revision = kwargs['revision']
commits_to_release = kwargs['commits_to_release']

revisions = []
for commit in commits_to_release:
revisions.append(Revision.objects.get(raw_node=commit))

result = init_deploy_static(revision, revisions=revisions, config=config,
commits_to_release=commits_to_release)
is_restart_required = toolchain.deploy_utils.is_restart_required(revisions)
if result is True:
init_deploy_default(config=config, restart=is_restart_required)

All these processes take about 2 minutes for deployment on all machines for a group of commits or single push. Our life is a lot easier; we don't worry anymore about pushing our code, and we can see our feature or bug fix or anything else live in production in just a few minutes. Undoubtedly, this will also help us release new features without wasting much time. Now deploying is as simple as writing code and testing on a local machine. We also deployed the hundredth commit to production a few days ago using automated deployment, which stands testimony to the robustness of this system. P.S. I am an undergraduate student at IIT-Roorkee. You can find me @LalitKhattar.

This post was originally written for the HackerEarth Engineering blog by Lalit Khattar, Summer Intern 2013 @HackerEarth

Round up of ACM ICPC Practice Contest

There isn’t much time left for the regional level of ACM ICPC coding contest. It is the most prestigious contest globally, and considering the exposure and charisma that it holds, as one nears the timelines, stress levels increase and one tends to doubt their preparation.

We at HackerEarth, understand this and conduct a 5-hour practice contest as a build up to the ACM ICPC.

The contest was styled similar to the ACM ICPC contests, wherein 5 hours were provided to solve 11 programming problems. The problem set, as described by the team involved in preparing, testing, fixing, and conducting the contest - was relatively easy for expert programmers, and we could feel the wave of submissions coming as soon as the contest became live. In the first hour itself, 8 out of 11 problems were solved by a lot of teams. The three remaining problems according to the team were difficult, especially Legendary Graph - and they were right! Only two teams could manage to crack that problem in the duration of 5 hours.

Though, the problem set ended up having one issue - which was the 10th problem.

So, before the prizes are distributed and sent, we need to clear the confusion regarding the final standings of the contest.

Game of sweets! (the 10th problem) did not have a clear problem statement, which resulted in a lot of teams interpreting the question differently than they should have — and ended up submitting a lot of apparently wrong solutions — some of which were correct according to the alternate interpretation of the problem statement. So, to sort that out, we decided to manually evaluate the submissions for the top people in the rank list — by checking if their solution passed either of the two interpretations of the given problem and then update the rank list for the top 3 people and the top 3 Indian teams.



The contest received participation from about 25 countries across the globe. A total of 1384 teams participated. Some of the best international programmers like anta, Lewin, Errichto, Xellos, Natsugiri, waterfalls also participated.

The top 3 teams were Anta, bloody_unko, and Lewin - where Anta and Lewin participated individually, and not in a team! They would be awarded vouchers worth $100, $80 and $50 respectively. The top 5 Indian teams were Faceless Men, DaFruitsSalad, Rex_Regum, Heuristics, Mobius_Treap. The top 3 Indian teams in this contest, who also qualify for ACM ICPC Regional will have their ACM ICPC travel expenses reimbursed.

The practice contest has been successful in equipping the participants with the format of the regional level of ACM ICPC contest. It has also succeeded in bringing to light several competent programmers on the global level. The zeal that this contest received globally, encourages us to come up with other similar contests in the future.

PS. You can find the editorials for all the problems in the contest here.

Our tribute to Django

The essense of Hackathons lie in the never-ending desire to solve problems, to make things work and get things done, no matter what the obstacles. We got to see this in action at Djangothon.

Hackathons are a long-standing tradition where people from all parts of the community come together to work on projects of their choosing.

Last Month, we celebrated 10 years of Django with a hackathon - Djangothon. Close to 30 different ideas were pitched and by the end we saw some great hacks.

The Winners

The winning application used the Django Facebook Social Graph for existing and new social login. It was build by Rajtilak Indrajit .

The hack in 2nd place was Django-LibSpark, an Apache Spark API for Django. It provides easy to use interface with chaining of various methods. The API uses PySpark to communicate with Spark. This was built by 2 very young developer Anik Das and Rashid Khan.

The 3rd winning team came up a simple idea of a pluggable django app. The app shows analytics graphs by picking up data from django models. The Django based app was built by Aishwarya Reddy and Souradeep De, a team from HackerEarth.

Here are some moments from Djangothon!

Djangothon 4

Sunday Morning Presentations

The highly anticipated Sunday morning presentations are always packed with surprises. It’s when groups talk about what they worked on, their successes and failures, and most importantly, what they learned. We heard from groups about exploring Django and even office table tennis game and twitter contest as energy booster for the participants.

While the hackathon has passed and the winners have been announced, the effect of those 24 hour will be felt for much longer.

Djangothon 3

Until next year!

This blog was written by Saumya Kapoor from the HackerEarth team
In the Spotlight

Technical Screening Guide: All You Need To Know

Read this guide and learn how you can establish a less frustrating developer hiring workflow for both hiring teams and candidates.
Read More
Top Products

Explore HackerEarth’s top products for Hiring & Innovation

Discover powerful tools designed to streamline hiring, assess talent efficiently, and run seamless hackathons. Explore HackerEarth’s top products that help businesses innovate and grow.
Frame
Hackathons
Engage global developers through innovation
Arrow
Frame 2
Assessments
AI-driven advanced coding assessments
Arrow
Frame 3
FaceCode
Real-time code editor for effective coding interviews
Arrow
Frame 4
L & D
Tailored learning paths for continuous assessments
Arrow
Authors

Meet our Authors

Get to know the experts behind our content. From industry leaders to tech enthusiasts, our authors share valuable insights, trends, and expertise to keep you informed and inspired.
Ruehie Jaiya Karri
Kumari Trishya

7 Tech Recruiting Trends To Watch Out For In 2024

The last couple of years transformed how the world works and the tech industry is no exception. Remote work, a candidate-driven market, and automation are some of the tech recruiting trends born out of the pandemic.

While accepting the new reality and adapting to it is the first step, keeping up with continuously changing hiring trends in technology is the bigger challenge right now.

What does 2024 hold for recruiters across the globe? What hiring practices would work best in this post-pandemic world? How do you stay on top of the changes in this industry?

The answers to these questions will paint a clearer picture of how to set up for success while recruiting tech talent this year.

7 tech recruiting trends for 2024

6 Tech Recruiting Trends To Watch Out For In 2022

Recruiters, we’ve got you covered. Here are the tech recruiting trends that will change the way you build tech teams in 2024.

Trend #1—Leverage data-driven recruiting

Data-driven recruiting strategies are the answer to effective talent sourcing and a streamlined hiring process.

Talent acquisition leaders need to use real-time analytics like pipeline growth metrics, offer acceptance rates, quality and cost of new hires, and candidate feedback scores to reduce manual work, improve processes, and hire the best talent.

The key to capitalizing on talent market trends in 2024 is data. It enables you to analyze what’s working and what needs refinement, leaving room for experimentation.

Trend #2—Have impactful employer branding

98% of recruiters believe promoting company culture helps sourcing efforts as seen in our 2021 State Of Developer Recruitment report.

Having a strong employer brand that supports a clear Employer Value Proposition (EVP) is crucial to influencing a candidate’s decision to work with your company. Perks like upskilling opportunities, remote work, and flexible hours are top EVPs that attract qualified candidates.

A clear EVP builds a culture of balance, mental health awareness, and flexibility—strengthening your employer brand with candidate-first policies.

Trend #3—Focus on candidate-driven market

The pandemic drastically increased the skills gap, making tech recruitment more challenging. With the severe shortage of tech talent, candidates now hold more power and can afford to be selective.

Competitive pay is no longer enough. Use data to understand what candidates want—work-life balance, remote options, learning opportunities—and adapt accordingly.

Recruiters need to think creatively to attract and retain top talent.


Recommended read: What NOT To Do When Recruiting Fresh Talent


Trend #4—Have a diversity and inclusion oriented company culture

Diversity and inclusion have become central to modern recruitment. While urgent hiring can delay D&I efforts, long-term success depends on inclusive teams. Our survey shows that 25.6% of HR professionals believe a diverse leadership team helps build stronger pipelines and reduces bias.

McKinsey’s Diversity Wins report confirms this: top-quartile gender-diverse companies see 25% higher profitability, and ethnically diverse teams show 36% higher returns.

It's refreshing to see the importance of an inclusive culture increasing across all job-seeking communities, especially in tech. This reiterates that D&I is a must-have, not just a good-to-have.

—Swetha Harikrishnan, Sr. HR Director, HackerEarth

Recommended read: Diversity And Inclusion in 2022 - 5 Essential Rules To Follow


Trend #5—Embed automation and AI into your recruitment systems

With the rise of AI tools like ChatGPT, automation is being adopted across every business function—including recruiting.

Manual communication with large candidate pools is inefficient. In 2024, recruitment automation and AI-powered platforms will automate candidate nurturing and communication, providing a more personalized experience while saving time.

Trend #6—Conduct remote interviews

With 32.5% of companies planning to stay remote, remote interviewing is here to stay.

Remote interviews expand access to global talent, reduce overhead costs, and increase flexibility—making the hiring process more efficient for both recruiters and candidates.

Trend #7—Be proactive in candidate engagement

Delayed responses or lack of updates can frustrate candidates and impact your brand. Proactive communication and engagement with both active and passive candidates are key to successful recruiting.

As recruitment evolves, proactive candidate engagement will become central to attracting and retaining talent. In 2023 and beyond, companies must engage both active and passive candidates through innovative strategies and technologies like chatbots and AI-powered systems. Building pipelines and nurturing relationships will enhance employer branding and ensure long-term hiring success.

—Narayani Gurunathan, CEO, PlaceNet Consultants

Recruiting Tech Talent Just Got Easier With HackerEarth

Recruiting qualified tech talent is tough—but we’re here to help. HackerEarth for Enterprises offers an all-in-one suite that simplifies sourcing, assessing, and interviewing developers.

Our tech recruiting platform enables you to:

  • Tap into a 6 million-strong developer community
  • Host custom hackathons to engage talent and boost your employer brand
  • Create online assessments to evaluate 80+ tech skills
  • Use dev-friendly IDEs and proctoring for reliable evaluations
  • Benchmark candidates against a global community
  • Conduct live coding interviews with FaceCode, our collaborative coding interview tool
  • Guide upskilling journeys via our Learning and Development platform
  • Integrate seamlessly with all leading ATS systems
  • Access 24/7 support with a 95% satisfaction score

Recommended read: The A-Zs Of Tech Recruiting - A Guide


Staying ahead of tech recruiting trends, improving hiring processes, and adapting to change is the way forward in 2024. Take note of the tips in this article and use them to build a future-ready hiring strategy.

Ready to streamline your tech recruiting? Try HackerEarth for Enterprises today.

(Part 2) Essential Questions To Ask When Interviewing Developers In 2021

The first part of this blog stresses the importance of asking the right technical interview questions to assess a candidate’s coding skills. But that alone is not enough. If you want to hire the crème de la crème of the developer talent out there, you have to look for a well-rounded candidate.

Honest communication, empathy, and passion for their work are equally important as a candidate’s technical knowledge. Soft skills are like the cherry on top. They set the best of the candidates apart from the rest.

Re-examine how you are vetting your candidates. Identify the gaps in your interviews. Once you start addressing these gaps, you find developers who have the potential to be great. And those are exactly the kind of people that you want to work with!

Let’s get to it, shall we?

Hire great developers

What constitutes a good interview question?

An ideal interview should reveal a candidate’s personality along with their technical knowledge. To formulate a comprehensive list of questions, keep in mind three important characteristics.

  • Questions are open-ended – questions like, “What are some of the programming languages you’re comfortable with,” instead of “Do you know this particular programming language” makes the candidate feel like they’re in control. It is also a chance to let them reply to your question in their own words.
  • They address the behavioral aspects of a candidate – ensure you have a few questions on your list that allow a candidate to describe a situation. A situation where a client was unhappy or a time when the developer learned a new technology. Such questions help you assess if the candidate is a good fit for the team.
  • There is no right or wrong answer – it is important to have a structured interview process in place. But this does not mean you have a list of standard answers in mind that you’re looking for. How candidates approach your questions shows you whether they have the makings of a successful candidate. Focus on that rather than on the actual answer itself.

Designing a conversation around these buckets of interview questions brings you to my next question, “What should you look for in each candidate to spot the best ones?”

Hire GREAT developers by asking the right questions

Before we dive deep into the interview questions, we have to think about a few things that have changed. COVID-19 has rendered working from home the new normal for the foreseeable future. As a recruiter, the onus falls upon you to understand whether the developer is comfortable working remotely and has the relevant resources to achieve maximum productivity.

#1 How do you plan your day?

Remote work gives employees the option to be flexible. You don’t have to clock in 9 hours a day as long as you get everything done on time. A developer who hasn’t always been working remotely, but has a routine in place, understands the pitfalls of working from home. It is easy to get distracted and having a schedule to fall back on ensures good productivity.

#2 Do you have experience using tools for collaboration and remote work?

Working from home reduces human interaction heavily. There is no way to just go up to your teammate’s desk and clarify issues. Virtual communication is key to getting work done. Look for what kind of remote working tools your candidate is familiar with and if they know what collaborative tools to use for different tasks.

Value-based interview questions to ask

We went around and spoke to our engineering team, and the recruiting team to see what questions they abide by; what they think makes any candidate tick.

The result? – a motley group of questions that aim to reveal the candidate’s soft skills, in addition to typical technical interview questions and test tasks.


Recommended read: How Recruiting The Right Tech Talent Can Solve Tech Debt


#3 Please describe three recent projects that you worked on. What were the most interesting and challenging parts?

This is an all-encompassing question in that it lets the candidate explain at length about their work ethic—thought process, handling QA, working with a team, and managing user feedback. This also lets you dig enough to assess whether the candidate is taking credit for someone else's work or not.

#4 You’ve worked long and hard to deliver a complex feature for a client and they say it’s not what they asked for. How would you take it?

A good developer will take it in their stride, work closely with the client to find the point of disconnect, and sort out the issue. There are so many things that could go wrong or not be to the client’s liking, and it falls on the developer to remain calm and create solutions.

#5 What new programming languages or technologies have you learned recently?

While being certified in many programming languages doesn't guarantee a great developer, it still is an important technical interview question to ask. It helps highlight a thirst for knowledge and shows that the developer is eager to learn new things.

#6 What does the perfect release look like? Who is involved and what is your role?

Have the developer take you through each phase of a recent software development lifecycle. Ask them to explain their specific role in each phase in this release. This will give you an excellent perspective into a developer’s mind. Do they talk about the before and after of the release? A skilled developer would. The chances of something going wrong in a release are very high. How would the developer react? Will they be able to handle the pressure?


SUBSCRIBE to the HackerEarth blog and enrich your monthly reading with our free e-newsletter – Fresh, insightful and awesome articles straight into your inbox from around the tech recruiting world!


#7 Tell me about a time when you had to convince your lead to try a different approach?

As an example of a behavioral interview question, this is a good one. The way a developer approaches this question speaks volumes about how confident they are expressing their views, and how succinct they are in articulating those views.

#8 What have you done with all the extra hours during the pandemic?

Did you binge-watch your way through the pandemic? I’m sure every one of us has done this. Indulge in a lighthearted conversation with your candidate. This lets them talk about something they are comfortable with. Maybe they learned a new skill or took up a hobby. Get to know a candidate’s interests and little pleasures for a more rounded evaluation.

Over to you! Now that you know what aspects of a candidate to focus on, you are well-equipped to bring out the best in each candidate in their interviews. A mix of strong technical skills and interpersonal qualities is how you spot good developers for your team.

If you have more pressing interview questions to add to this list of ours, please write to us at contact@hackerearth.com.

(Part 1) Essential Questions To Ask When Recruiting Developers In 2021

The minute a developer position opens up, recruiters feel a familiar twinge of fear run down their spines. They recall their previous interview experiences, and how there seems to be a blog post a month that goes viral about bad developer interviews.

While hiring managers, especially the picky ones, would attribute this to a shortage of talented developers, what if the time has come to rethink your interview process? What if recruiters and hiring managers put too much stock into bringing out the technical aspects of each candidate and don’t put enough emphasis on their soft skills?

A report by Robert Half shows that 86% of technology leaders say it’s challenging to find IT talent. Interviewing developers should be a rewarding experience, not a challenging one. If you don’t get caught up in asking specific questions and instead design a simple conversation to gauge a candidate’s way of thinking, it throws up a lot of good insight and makes it fun too.

Developer Hiring Statistics

Asking the right technical interview questions when recruiting developers is important but so is clear communication, good work ethic, and alignment with your organization’s goals.

Let us first see what kind of technical interview questions are well-suited to revealing the coding skills and knowledge of any developer, and then tackle the behavioral aspects of the candidate that sets them apart from the rest.

Recruit GREAT developers by asking the right questions

Here are some technical interview questions that you should ask potential software engineers when interviewing.

#1 Write an algorithm for the following

  1. Minimum Stack - Design a stack that provides 4 functions - push(item), pop, peek, and minimum, all in constant order time complexity. Then move on to coding the actual solution.
  2. Kth Largest Element in an array - This is a standard problem with multiple solutions of best time complexity orders where N log(K) is a common one and O(N) + K log(N) is a lesser-known order. Both solutions are acceptable, not directly comparable to each other, and better than N log(N), which is sorting an array and fetching the Kth element.
  3. Top View of a Binary Tree - Given a root node of the binary tree, return the set of all elements that will get wet if it rains on the tree. Nodes having any nodes directly above them will not get wet.
  4. Internal implementation of a hashtable like a map/dictionary - A candidate needs to specify how key-value pairs are stored, hashing is used and collisions are handled. A good developer not only knows how to use this concept but also how it works. If the developer also knows how the data structure scales when the number of records increases in the hashtable, that is a bonus.

Algorithms demonstrate a candidate’s ability to break down a complex problem into steps. Reasoning and pattern recognition capabilities are some more factors to look for when assessing a candidate. A good candidate can code his thought process of the algorithm finalized during the discussion.


Looking for a great place to hire developers in the US? Try Jooble!


#2 Formulate solutions for the below low-level design (LLD) questions

  • What is LLD? In your own words, specify the different aspects covered in LLD.
  • Design a movie ticket booking application like BookMyShow. Ensure that your database schema is tailored for a theatre with multiple screens and takes care of booking, seat availability, seat arrangement, and seat locking. Your solution does not have to extend to the payment option.
  • Design a basic social media application. Design database schema and APIs for a platform like Twitter with features for following a user, tweeting a post, seeing your tweet, and seeing a user's tweet.

Such questions do not have a right or wrong answer. They primarily serve to reveal a developer’s thought process and the way they approach a problem.


Recommended read: Hardest Tech Roles to Fill (+ solutions!)


#3 Some high-level design (HLD) questions

  • What do you understand by HLD? Can you specify the difference between LLD and HLD?
  • Design a social media application. In addition to designing a platform like Twitter with features for following a user, tweeting a post, seeing your tweet, and seeing a user's tweet, design a timeline. After designing a timeline where you can see your followers’ tweets, scale it for a larger audience. If you still have time, try to scale it for a celebrity use case.
  • Design for a train ticket booking application like IRCTC. Incorporate auth, features to choose start and end stations, view available trains and available seats between two stations, save reservation of seats from start to end stations, and lock them till payment confirmation.
  • How will you design a basic relational database? The database should support tables, columns, basic field types like integer and text, foreign keys, and indexes. The way a developer approaches this question is important. A good developer designs a solution around storage and memory management.
Here’s a pro-tip for you. LLD questions can be answered by both beginners and experienced developers. Mostly, senior developers can be expected to answer HLD questions. Choose your interview questions set wisely, and ask questions relevant to your candidate’s experience.

#4 Have you ever worked with SQL? Write queries for a specific use case that requires multiple joins.

Example: Create a table with separate columns for student name, subject, and marks scored. Return student names and ranks of each student. The rank of a student depends on the total of marks in all subjects.

Not all developers would have experience working with SQL but some knowledge about how data is stored/structured is useful. Developers should be familiar with simple concepts like joins, retrieval queries, and the basics of DBMS.

#5 What do you think is wrong with this code?

Instead of asking developer candidates to write code on a piece of paper (which is outdated, anyway), ask them to debug existing code. This is another way to assess their technical skills. Place surreptitious errors in the code and evaluate their attention to detail.

Now that you know exactly what technical skills to look for and when questions to ask when interviewing developers, the time has come to assess the soft skills of these candidates. Part 2 of this blog throws light on the how and why of evaluating candidates based on their communication skills, work ethic, and alignment with the company’s goals.

View all

Best Pre-Employment Assessments: Optimizing Your Hiring Process for 2024

In today's competitive talent market, attracting and retaining top performers is crucial for any organization's success. However, traditional hiring methods like relying solely on resumes and interviews may not always provide a comprehensive picture of a candidate's skills and potential. This is where pre-employment assessments come into play.

What is Pre-Employement Assessment?

Pre-employment assessments are standardized tests and evaluations administered to candidates before they are hired. These assessments can help you objectively measure a candidate's knowledge, skills, abilities, and personality traits, allowing you to make data-driven hiring decisions.

By exploring and evaluating the best pre-employment assessment tools and tests available, you can:

  • Improve the accuracy and efficiency of your hiring process.
  • Identify top talent with the right skills and cultural fit.
  • Reduce the risk of bad hires.
  • Enhance the candidate experience by providing a clear and objective evaluation process.

This guide will provide you with valuable insights into the different types of pre-employment assessments available and highlight some of the best tools, to help you optimize your hiring process for 2024.

Why pre-employment assessments are key in hiring

While resumes and interviews offer valuable insights, they can be subjective and susceptible to bias. Pre-employment assessments provide a standardized and objective way to evaluate candidates, offering several key benefits:

  • Improved decision-making:

    By measuring specific skills and knowledge, assessments help you identify candidates who possess the qualifications necessary for the job.

  • Reduced bias:

    Standardized assessments mitigate the risks of unconscious bias that can creep into traditional interview processes.

  • Increased efficiency:

    Assessments can streamline the initial screening process, allowing you to focus on the most promising candidates.

  • Enhanced candidate experience:

    When used effectively, assessments can provide candidates with a clear understanding of the required skills and a fair chance to showcase their abilities.

Types of pre-employment assessments

There are various types of pre-employment assessments available, each catering to different needs and objectives. Here's an overview of some common types:

1. Skill Assessments:

  • Technical Skills: These assessments evaluate specific technical skills and knowledge relevant to the job role, such as programming languages, software proficiency, or industry-specific expertise. HackerEarth offers a wide range of validated technical skill assessments covering various programming languages, frameworks, and technologies.
  • Soft Skills: These employment assessments measure non-technical skills like communication, problem-solving, teamwork, and critical thinking, crucial for success in any role.

2. Personality Assessments:

These employment assessments can provide insights into a candidate's personality traits, work style, and cultural fit within your organization.

3. Cognitive Ability Tests:

These tests measure a candidate's general mental abilities, such as reasoning, problem-solving, and learning potential.

4. Integrity Assessments:

These employment assessments aim to identify potential risks associated with a candidate's honesty, work ethic, and compliance with company policies.

By understanding the different types of assessments and their applications, you can choose the ones that best align with your specific hiring needs and ensure you hire the most qualified and suitable candidates for your organization.

Leading employment assessment tools and tests in 2024

Choosing the right pre-employment assessment tool depends on your specific needs and budget. Here's a curated list of some of the top pre-employment assessment tools and tests available in 2024, with brief overviews:

  • HackerEarth:

    A comprehensive platform offering a wide range of validated skill assessments in various programming languages, frameworks, and technologies. It also allows for the creation of custom assessments and integrates seamlessly with various recruitment platforms.

  • SHL:

    Provides a broad selection of assessments, including skill tests, personality assessments, and cognitive ability tests. They offer customizable solutions and cater to various industries.

  • Pymetrics:

    Utilizes gamified assessments to evaluate cognitive skills, personality traits, and cultural fit. They offer a data-driven approach and emphasize candidate experience.

  • Wonderlic:

    Offers a variety of assessments, including the Wonderlic Personnel Test, which measures general cognitive ability. They also provide aptitude and personality assessments.

  • Harver:

    An assessment platform focusing on candidate experience with video interviews, gamified assessments, and skills tests. They offer pre-built assessments and customization options.

Remember: This list is not exhaustive, and further research is crucial to identify the tool that aligns best with your specific needs and budget. Consider factors like the types of assessments offered, pricing models, integrations with your existing HR systems, and user experience when making your decision.

Choosing the right pre-employment assessment tool

Instead of full individual tool reviews, consider focusing on 2–3 key platforms. For each platform, explore:

  • Target audience: Who are their assessments best suited for (e.g., technical roles, specific industries)?
  • Types of assessments offered: Briefly list the available assessment categories (e.g., technical skills, soft skills, personality).
  • Key features: Highlight unique functionalities like gamification, custom assessment creation, or seamless integrations.
  • Effectiveness: Briefly mention the platform's approach to assessment validation and reliability.
  • User experience: Consider including user reviews or ratings where available.

Comparative analysis of assessment options

Instead of a comprehensive comparison, consider focusing on specific use cases:

  • Technical skills assessment:

    Compare HackerEarth and Wonderlic based on their technical skill assessment options, focusing on the variety of languages/technologies covered and assessment formats.

  • Soft skills and personality assessment:

    Compare SHL and Pymetrics based on their approaches to evaluating soft skills and personality traits, highlighting any unique features like gamification or data-driven insights.

  • Candidate experience:

    Compare Harver and Wonderlic based on their focus on candidate experience, mentioning features like video interviews or gamified assessments.

Additional tips:

  • Encourage readers to visit the platforms' official websites for detailed features and pricing information.
  • Include links to reputable third-party review sites where users share their experiences with various tools.

Best practices for using pre-employment assessment tools

Integrating pre-employment assessments effectively requires careful planning and execution. Here are some best practices to follow:

  • Define your assessment goals:

    Clearly identify what you aim to achieve with assessments. Are you targeting specific skills, personality traits, or cultural fit?

  • Choose the right assessments:

    Select tools that align with your defined goals and the specific requirements of the open position.

  • Set clear expectations:

    Communicate the purpose and format of the assessments to candidates in advance, ensuring transparency and building trust.

  • Integrate seamlessly:

    Ensure your chosen assessment tool integrates smoothly with your existing HR systems and recruitment workflow.

  • Train your team:

    Equip your hiring managers and HR team with the knowledge and skills to interpret assessment results effectively.

Interpreting assessment results accurately

Assessment results offer valuable data points, but interpreting them accurately is crucial for making informed hiring decisions. Here are some key considerations:

  • Use results as one data point:

    Consider assessment results alongside other information, such as resumes, interviews, and references, for a holistic view of the candidate.

  • Understand score limitations:

    Don't solely rely on raw scores. Understand the assessment's validity and reliability and the potential for cultural bias or individual test anxiety.

  • Look for patterns and trends:

    Analyze results across different assessments and identify consistent patterns that align with your desired candidate profile.

  • Focus on potential, not guarantees:

    Assessments indicate potential, not guarantees of success. Use them alongside other evaluation methods to make well-rounded hiring decisions.

Choosing the right pre-employment assessment tools

Selecting the most suitable pre-employment assessment tool requires careful consideration of your organization's specific needs. Here are some key factors to guide your decision:

  • Industry and role requirements:

    Different industries and roles demand varying skill sets and qualities. Choose assessments that target the specific skills and knowledge relevant to your open positions.

  • Company culture and values:

    Align your assessments with your company culture and values. For example, if collaboration is crucial, look for assessments that evaluate teamwork and communication skills.

  • Candidate experience:

    Prioritize tools that provide a positive and smooth experience for candidates. This can enhance your employer brand and attract top talent.

Budget and accessibility considerations

Budget and accessibility are essential factors when choosing pre-employment assessments:

  • Budget:

    Assessment tools come with varying pricing models (subscriptions, pay-per-use, etc.). Choose a tool that aligns with your budget and offers the functionalities you need.

  • Accessibility:

    Ensure the chosen assessment is accessible to all candidates, considering factors like language options, disability accommodations, and internet access requirements.

Additional Tips:

  • Free trials and demos: Utilize free trials or demos offered by assessment platforms to experience their functionalities firsthand.
  • Consult with HR professionals: Seek guidance from HR professionals or recruitment specialists with expertise in pre-employment assessments.
  • Read user reviews and comparisons: Gain insights from other employers who use various assessment tools.

By carefully considering these factors, you can select the pre-employment assessment tool that best aligns with your organizational needs, budget, and commitment to an inclusive hiring process.

Remember, pre-employment assessments are valuable tools, but they should not be the sole factor in your hiring decisions. Use them alongside other evaluation methods and prioritize building a fair and inclusive hiring process that attracts and retains top talent.

Future trends in pre-employment assessments

The pre-employment assessment landscape is constantly evolving, with innovative technologies and practices emerging. Here are some potential future trends to watch:

  • Artificial intelligence (AI):

    AI-powered assessments can analyze candidate responses, written work, and even resumes, using natural language processing to extract relevant insights and identify potential candidates.

  • Adaptive testing:

    These assessments adjust the difficulty level of questions based on the candidate's performance, providing a more efficient and personalized evaluation.

  • Micro-assessments:

    Short, focused assessments delivered through mobile devices can assess specific skills or knowledge on-the-go, streamlining the screening process.

  • Gamification:

    Engaging and interactive game-based elements can make the assessment experience more engaging and assess skills in a realistic and dynamic way.

Conclusion

Pre-employment assessments, when used thoughtfully and ethically, can be a powerful tool to optimize your hiring process, identify top talent, and build a successful workforce for your organization. By understanding the different types of assessments available, exploring top-rated tools like HackerEarth, and staying informed about emerging trends, you can make informed decisions that enhance your ability to attract, evaluate, and hire the best candidates for the future.

Tech Layoffs: What To Expect In 2024

Layoffs in the IT industry are becoming more widespread as companies fight to remain competitive in a fast-changing market; many turn to layoffs as a cost-cutting measure. Last year, 1,000 companies including big tech giants and startups, laid off over two lakhs of employees. But first, what are layoffs in the tech business, and how do they impact the industry?

Tech layoffs are the termination of employment for some employees by a technology company. It might happen for various reasons, including financial challenges, market conditions, firm reorganization, or the after-effects of a pandemic. While layoffs are not unique to the IT industry, they are becoming more common as companies look for methods to cut costs while remaining competitive.

The consequences of layoffs in technology may be catastrophic for employees who lose their jobs and the firms forced to make these difficult decisions. Layoffs can result in the loss of skill and expertise and a drop in employee morale and productivity. However, they may be required for businesses to stay afloat in a fast-changing market.

This article will examine the reasons for layoffs in the technology industry, their influence on the industry, and what may be done to reduce their negative impacts. We will also look at the various methods for tracking tech layoffs.

What are tech layoffs?

The term "tech layoff" describes the termination of employees by an organization in the technology industry. A company might do this as part of a restructuring during hard economic times.

In recent times, the tech industry has witnessed a wave of significant layoffs, affecting some of the world’s leading technology companies, including Amazon, Microsoft, Meta (formerly Facebook), Apple, Cisco, SAP, and Sony. These layoffs are a reflection of the broader economic challenges and market adjustments facing the sector, including factors like slowing revenue growth, global economic uncertainties, and the need to streamline operations for efficiency.

Each of these tech giants has announced job cuts for various reasons, though common themes include restructuring efforts to stay competitive and agile, responding to over-hiring during the pandemic when demand for tech services surged, and preparing for a potentially tough economic climate ahead. Despite their dominant positions in the market, these companies are not immune to the economic cycles and technological shifts that influence operational and strategic decisions, including workforce adjustments.

This trend of layoffs in the tech industry underscores the volatile nature of the tech sector, which is often at the mercy of rapid changes in technology, consumer preferences, and the global economy. It also highlights the importance of adaptability and resilience for companies and employees alike in navigating the uncertainties of the tech landscape.

Causes for layoffs in the tech industry

Why are tech employees suffering so much?

Yes, the market is always uncertain, but why resort to tech layoffs?

Various factors cause tech layoffs, including company strategy changes, market shifts, or financial difficulties. Companies may lay off employees if they need help to generate revenue, shift their focus to new products or services, or automate certain jobs.

In addition, some common reasons could be:

Financial struggles

Currently, the state of the global market is uncertain due to economic recession, ongoing war, and other related phenomena. If a company is experiencing financial difficulties, only sticking to pay cuts may not be helpful—it may need to reduce its workforce to cut costs.


Also, read: 6 Steps To Create A Detailed Recruiting Budget (Template Included)


Changes in demand

The tech industry is constantly evolving, and companies would have to adjust their workforce to meet changing market conditions. For instance, companies are adopting remote work culture, which surely affects on-premises activity, and companies could do away with some number of tech employees at the backend.

Restructuring

Companies may also lay off employees as part of a greater restructuring effort, such as spinning off a division or consolidating operations.

Automation

With the advancement in technology and automation, some jobs previously done by human labor may be replaced by machines, resulting in layoffs.

Mergers and acquisitions

When two companies merge, there is often overlap in their operations, leading to layoffs as the new company looks to streamline its workforce.

But it's worth noting that layoffs are not exclusive to the tech industry and can happen in any industry due to uncertainty in the market.

Will layoffs increase in 2024?

It is challenging to estimate the rise or fall of layoffs. The overall state of the economy, the health of certain industries, and the performance of individual companies will play a role in deciding the degree of layoffs in any given year.

But it is also seen that, in the first 15 days of this year, 91 organizations laid off over 24,000 tech workers, and over 1,000 corporations cut down more than 150,000 workers in 2022, according to an Economic Times article.

The COVID-19 pandemic caused a huge economic slowdown and forced several businesses to downsize their employees. However, some businesses rehired or expanded their personnel when the world began to recover.

So, given the current level of economic uncertainty, predicting how the situation will unfold is difficult.


Also, read: 4 Images That Show What Developers Think Of Layoffs In Tech


What types of companies are prone to tech layoffs?

2023 Round Up Of Layoffs In Big Tech

Tech layoffs can occur in organizations of all sizes and various areas.

Following are some examples of companies that have experienced tech layoffs in the past:

Large tech firms

Companies such as IBM, Microsoft, Twitter, Better.com, Alibaba, and HP have all experienced layoffs in recent years as part of restructuring initiatives or cost-cutting measures.

Market scenarios are still being determined after Elon Musk's decision to lay off employees. Along with tech giants, some smaller companies and startups have also been affected by layoffs.

Startups

Because they frequently work with limited resources, startups may be forced to lay off staff if they cannot get further funding or need to pivot due to market downfall.

Small and medium-sized businesses

Small and medium-sized businesses face layoffs due to high competition or if the products/services they offer are no longer in demand.

Companies in certain industries

Some sectors of the technological industry, such as the semiconductor industry or automotive industry, may be more prone to layoffs than others.

Companies that lean on government funding

Companies that rely significantly on government contracts may face layoffs if the government cuts technology spending or contracts are not renewed.

How to track tech layoffs?

You can’t stop tech company layoffs, but you should be keeping track of them. We, HR professionals and recruiters, can also lend a helping hand in these tough times by circulating “layoff lists” across social media sites like LinkedIn and Twitter to help people land jobs quicker. Firefish Software put together a master list of sources to find fresh talent during the layoff period.

Because not all layoffs are publicly disclosed, tracking tech industry layoffs can be challenging, and some may go undetected. There are several ways to keep track of tech industry layoffs:

Use tech layoffs tracker

Layoff trackers like thelayoff.com and layoffs.fyi provide up-to-date information on layoffs.

In addition, they aid in identifying trends in layoffs within the tech industry. It can reveal which industries are seeing the most layoffs and which companies are the most affected.

Companies can use layoff trackers as an early warning system and compare their performance to that of other companies in their field.

News articles

Because many news sites cover tech layoffs as they happen, keeping a watch on technology sector stories can provide insight into which organizations are laying off employees and how many individuals have been affected.

Social media

Organizations and employees frequently publish information about layoffs in tech on social media platforms; thus, monitoring companies' social media accounts or following key hashtags can provide real-time updates regarding layoffs.

Online forums and communities

There are online forums and communities dedicated to discussing tech industry news, and they can be an excellent source of layoff information.

Government reports

Government agencies such as the Bureau of Labor Statistics (BLS) publish data on layoffs and unemployment, which can provide a more comprehensive picture of the technology industry's status.

How do companies reduce tech layoffs?

Layoffs in tech are hard – for the employee who is losing their job, the recruiter or HR professional who is tasked with informing them, and the company itself. So, how can we aim to avoid layoffs? Here are some ways to minimize resorting to letting people go:

Salary reductions

Instead of laying off employees, businesses can lower the salaries or wages of all employees. It can be accomplished by instituting compensation cuts or salary freezes.

Implementing a hiring freeze

Businesses can halt employing new personnel to cut costs. It can be a short-term solution until the company's financial situation improves.


Also, read: What Recruiters Can Focus On During A Tech Hiring Freeze


Non-essential expense reduction

Businesses might search for ways to cut or remove non-essential expenses such as travel, training, and office expenses.

Reducing working hours

Companies can reduce employee working hours to save money, such as implementing a four-day workweek or a shorter workday.

These options may not always be viable and may have their problems, but before laying off, a company owes it to its people to consider every other alternative, and formulate the best solution.

Tech layoffs to bleed into this year

While we do not know whether this trend will continue or subside during 2023, we do know one thing. We have to be prepared for a wave of layoffs that is still yet to hit. As of last month, Layoffs.fyi had already tracked 170+ companies conducting 55,970 layoffs in 2023.

So recruiters, let’s join arms, distribute those layoff lists like there’s no tomorrow, and help all those in need of a job! :)

What is Headhunting In Recruitment?: Types & How Does It Work?

In today’s fast-paced world, recruiting talent has become increasingly complicated. Technological advancements, high workforce expectations and a highly competitive market have pushed recruitment agencies to adopt innovative strategies for recruiting various types of talent. This article aims to explore one such recruitment strategy – headhunting.

What is Headhunting in recruitment?

In headhunting, companies or recruitment agencies identify, engage and hire highly skilled professionals to fill top positions in the respective companies. It is different from the traditional process in which candidates looking for job opportunities approach companies or recruitment agencies. In headhunting, executive headhunters, as recruiters are referred to, approach prospective candidates with the hiring company’s requirements and wait for them to respond. Executive headhunters generally look for passive candidates, those who work at crucial positions and are not on the lookout for new work opportunities. Besides, executive headhunters focus on filling critical, senior-level positions indispensable to companies. Depending on the nature of the operation, headhunting has three types. They are described later in this article. Before we move on to understand the types of headhunting, here is how the traditional recruitment process and headhunting are different.

How do headhunting and traditional recruitment differ from each other?

Headhunting is a type of recruitment process in which top-level managers and executives in similar positions are hired. Since these professionals are not on the lookout for jobs, headhunters have to thoroughly understand the hiring companies’ requirements and study the work profiles of potential candidates before creating a list.

In the traditional approach, there is a long list of candidates applying for jobs online and offline. Candidates approach recruiters for jobs. Apart from this primary difference, there are other factors that define the difference between these two schools of recruitment.

AspectHeadhuntingTraditional RecruitmentCandidate TypePrimarily passive candidateActive job seekersApproachFocused on specific high-level rolesBroader; includes various levelsScopeproactive outreachReactive: candidates applyCostGenerally more expensive due to expertise requiredTypically lower costsControlManaged by headhuntersManaged internally by HR teams

All the above parameters will help you to understand how headhunting differs from traditional recruitment methods, better.

Types of headhunting in recruitment

Direct headhunting: In direct recruitment, hiring teams reach out to potential candidates through personal communication. Companies conduct direct headhunting in-house, without outsourcing the process to hiring recruitment agencies. Very few businesses conduct this type of recruitment for top jobs as it involves extensive screening across networks outside the company’s expanse.

Indirect headhunting: This method involves recruiters getting in touch with their prospective candidates through indirect modes of communication such as email and phone calls. Indirect headhunting is less intrusive and allows candidates to respond at their convenience.Third-party recruitment: Companies approach external recruitment agencies or executive headhunters to recruit highly skilled professionals for top positions. This method often leverages the company’s extensive contact network and expertise in niche industries.

How does headhunting work?

Finding highly skilled professionals to fill critical positions can be tricky if there is no system for it. Expert executive headhunters employ recruitment software to conduct headhunting efficiently as it facilitates a seamless recruitment process for executive headhunters. Most software is AI-powered and expedites processes like candidate sourcing, interactions with prospective professionals and upkeep of communication history. This makes the process of executive search in recruitment a little bit easier. Apart from using software to recruit executives, here are the various stages of finding high-calibre executives through headhunting.

Identifying the role

Once there is a vacancy for a top job, one of the top executives like a CEO, director or the head of the company, reach out to the concerned personnel with their requirements. Depending on how large a company is, they may choose to headhunt with the help of an external recruiting agency or conduct it in-house. Generally, the task is assigned to external recruitment agencies specializing in headhunting. Executive headhunters possess a database of highly qualified professionals who work in crucial positions in some of the best companies. This makes them the top choice of conglomerates looking to hire some of the best talents in the industry.

Defining the job

Once an executive headhunter or a recruiting agency is finalized, companies conduct meetings to discuss the nature of the role, how the company works, the management hierarchy among other important aspects of the job. Headhunters are expected to understand these points thoroughly and establish a clear understanding of their expectations and goals.

Candidate identification and sourcing

Headhunters analyse and understand the requirements of their clients and begin creating a pool of suitable candidates from their database. The professionals are shortlisted after conducting extensive research of job profiles, number of years of industry experience, professional networks and online platforms.

Approaching candidates

Once the potential candidates have been identified and shortlisted, headhunters move on to get in touch with them discreetly through various communication channels. As such candidates are already working at top level positions at other companies, executive headhunters have to be low-key while doing so.

Assessment and Evaluation

In this next step, extensive screening and evaluation of candidates is conducted to determine their suitability for the advertised position.

Interviews and negotiations

Compensation is a major topic of discussion among recruiters and prospective candidates. A lot of deliberation and negotiation goes on between the hiring organization and the selected executives which is facilitated by the headhunters.

Finalizing the hire

Things come to a close once the suitable candidates accept the job offer. On accepting the offer letter, headhunters help finalize the hiring process to ensure a smooth transition.

The steps listed above form the blueprint for a typical headhunting process. Headhunting has been crucial in helping companies hire the right people for crucial positions that come with great responsibility. However, all systems have a set of challenges no matter how perfect their working algorithm is. Here are a few challenges that talent acquisition agencies face while headhunting.

Common challenges in headhunting

Despite its advantages, headhunting also presents certain challenges:

Cost Implications: Engaging headhunters can be more expensive than traditional recruitment methods due to their specialized skills and services.

Time-Consuming Process: While headhunting can be efficient, finding the right candidate for senior positions may still take time due to thorough evaluation processes.

Market Competition: The competition for top talent is fierce; organizations must present compelling offers to attract passive candidates away from their current roles.

Although the above mentioned factors can pose challenges in the headhunting process, there are more upsides than there are downsides to it. Here is how headhunting has helped revolutionize the recruitment of high-profile candidates.

Advantages of Headhunting

Headhunting offers several advantages over traditional recruitment methods:

Access to Passive Candidates: By targeting individuals who are not actively seeking new employment, organisations can access a broader pool of highly skilled professionals.

Confidentiality: The discreet nature of headhunting protects both candidates’ current employment situations and the hiring organisation’s strategic interests.

Customized Search: Headhunters tailor their search based on the specific needs of the organization, ensuring a better fit between candidates and company culture.

Industry Expertise: Many headhunters specialise in particular sectors, providing valuable insights into market dynamics and candidate qualifications.

Conclusion

Although headhunting can be costly and time-consuming, it is one of the most effective ways of finding good candidates for top jobs. Executive headhunters face several challenges maintaining the g discreetness while getting in touch with prospective clients. As organizations navigate increasingly competitive markets, understanding the nuances of headhunting becomes vital for effective recruitment strategies. To keep up with the technological advancements, it is better to optimise your hiring process by employing online recruitment software like HackerEarth, which enables companies to conduct multiple interviews and evaluation tests online, thus improving candidate experience. By collaborating with skilled headhunters who possess industry expertise and insights into market trends, companies can enhance their chances of securing high-caliber professionals who drive success in their respective fields.

View all