Home
/
Blog
/
Developer Insights
/
Making the Internet faster at Netflix

Making the Internet faster at Netflix

Author
Arbaz Nadeem
Calendar Icon
June 26, 2020
Timer Icon
3 min read
Share

Explore this post with:

In our fourth episode of Breaking404, we caught up with Sergey Fedorov, Director of Engineering, Netflix to understand how one of the world’s biggest and most famous Over-The-Top (OTT) media service provider, Netflix, handles its content delivery and network acceleration to provide uninterrupted services to its users globally.

Subscribe:Spotify|iTunes|Stitcher|SoundCloud|TuneIn

Sachin: Hello everyone and welcome to the 04th episode of Breaking 404, a podcast by HackerEarth for all engineering enthusiasts and professionals to learn from top influencers in the tech world. This is your host Sachin and today I have with me Sergey Fedorov, The Director of Engineering at Netflix. As you all know, Netflix is a media services provider and a production company that most of us have been binge-watching content on for while now. Welcome, Sergey! We’re delighted to have you as a guest on our podcast today.

Sergey: Thanks for having me, Sachin!

Sachin: So to begin with, can you tell the audience a little bit about yourself, a quick introduction about what’s been your professional journey over the years?

Sergey: Yeah, sure. So originally I’m from Russia, from the city of Nizhny Novgorod, which is more of a province town, not very well known. And that’s where I got my education. I went to college from a very good, but also not very well known university and that’s where I had my first dream team back in 2009 when I was in third grade in college. I teamed up with my friends and some super-smart folks to compete in a competition by Microsoft, which is a kind of student contest where you go and create software products. In that year we were supposed to solve one of the big United Nations problems and what we did, we were building a system to monitor and contain the spread of pandemic diseases. Hopefully, that sounds familiar, but it’s what it was in 2009. And as a result, we had unexpected and very exciting success. We happen to take second place in the worldwide competition in the final in Egypt. And that was really exciting to be near the top amongst the 300,000 competing students. And it was really the first pivotal point in my career which really opened the world to me because the internship at Intel quickly followed and it was kind of the R & D scoped, focused on computer graphics and distributed computing. And a year after I was lucky to be one of the few students from Europe to fly, to Redmond, to be a summer intern at Microsoft. It followed with a full-time offer to relocate to the US upon graduation from college in 2011. At Microsoft, I worked in the Bing team helping to scale and optimize the developer ecosystem, particularly the massive continuous deployment and build system for the Bing product that Microsoft. That was a really exciting journey, but the relatively short one, because quickly after an unexpected, the referral happened to me with an invitation to interview for the content delivery team at Netflix, that was just kind of getting started and to help them build the platform and to link and services for the content delivery infrastructure. And quite frankly, I don’t expect that I’ll make it, but I couldn’t pass the opportunity at least to interview. But somehow I made it, very early in my career. I was 23 years old with just a few years of practical experience and it was quite stressful to join the company. I was on an H1B visa. I lacked confidence. I lacked a lot of, kind of relevant to and can experience in that area. Yet I gave it a shot, and I joined a team of world-renowned experts in internet delivery. And, um, I stayed there ever since. I will say that that decision and that risk that I took was the second big milestone in my career. Because from there it allowed me to grow extremely quickly and it allowed me to be truly on the frontier of technology and shape my mindset working for one of the top kinds of leading companies in the Silicon Valley, I’ve been here for about eight years. I initialized, I stayed on the platform and tooling side. I built a monitoring system, a number of data analysis tools. The overall mission of the team is to build the content delivery infrastructure, to support the streaming for Netflix. And over time, we added some extra services on top of pure video delivery. And a few years ago, that’s the group that I joined still staying within the same org, working on some of their extra advanced CDN like functionality, specifically developing some of the ways to accelerate the network interactions between clients and the server, uh, helping to better balance the network traffic, the traffic between clients and the multiple regions in the cloud. And I also worked a little bit on the public-facing tool. So I built the speed task called fast.com, which is one of the most popular internet testing services today powered by open connect CDN. And as of today, I’m a hands-on engineering leader. I don’t really manage the team. Instead, I work extremely cross-functionally with partners and folks across the Netflix engineering group. And I help to kind of drive major engineering initiatives in areas related to client-server network interactions. And I have to improve and evolve different bits and pieces of Netflix infrastructure stack.

Sachin: Thanks so much for that and it’s an amazing journey. You know, it’s really inspiring to see. Um, would it be fair to say that, you know, you kind of didn’t, it’s been serendipitous for you in some sense, did you plan to be here in the US and you know, be working in an organization like this or it all just happened back when in school, when you decided to participate in the Imagine cup challenge?

Sergey: Well, I wouldn’t say that I didn’t want to do that, but I definitely didn’t expect to, and I definitely didn’t expect to be in a place where I am today. I would say that my whole career was a very unexpected sequence of very fortunate events. I guess, in any case, I was sort of seeking those opportunities and I was not afraid to take a risk and jump on them.

Sachin: Yeah, that’s super inspiring for our audience and, like you correctly said, you got to seek those opportunities, and of course you need a little bit of luck, but if you’re willing to take those risks, doors do open. So, definitely very inspiring. Uh, so a fun question for you. What was the first programming language you, you ever recorded in and you still use that?

Sergey: Yeah, that’s a really interesting question. Um, the first language that I used was Pascal. And, uh, it was when I was 14 years old. So I started my journey with computers relatively late. And so it was kind of in the high school at this point. And the first lines of code that I wrote were actually on paper and I was attending The Sunday boot camp, led by one of the tutors who was preparing some of the folks to compete with ACM style competitions, where you compete on different algorithmic challenges. And he did it for free just for folks to come in. And someone mentioned that to me. I was like, Ooh, that’s interesting. Let me see what it’s about. And for the first few months, I was just doing things like discussing different bits and pieces about programming and all I had was a paper to write different things on. Later on, I of course had a computer and the first few years of Pascal was the primary entry for me to programming. And it was primarily around CLI and some of the algorithmic challenges. It’s only a couple of years ago when I discovered the ID and the graphic interfaces, and it really opened the world of what they could do. Uh, so yeah for me the first programming language is Pascal. And no, I don’t use it, but still have very warm memories of that because I think it’s a really, really good language to start with.

Sachin: Writing your first piece of code on paper. That’s an amazing thing. The folks who are getting into computer science today, they get all these IDEs, autocomplete, you know, all the infrastructure right upfront. Uh, but I think there is some merit in doing things the hard way. It prepares you for challenges and that’s my personal opinion.

Sergey: Yeah, I definitely agree with that. I’m not sure whether the fact that they had to go through that is an advantage or disadvantage for me, because I really had to understand the very basics and fundamentals. And I was super lucky with a tutor for that. He really didn’t go to the advanced concepts until I really nailed down the fundamentals. And I think having to really painfully go through that, if you’re kind of using a pen and sheets of paper, I think it really forces you to really get it.

Sachin: Right. Makes sense. So Netflix is one of the companies that has been growing massively over the last few years and acquiring millions of users. What are some of those key design and architecture philosophies that engineers at Netflix follow to handle such a scale in terms of network acceleration, as well as content delivery?

Sergey: Yeah, that’s an excellent question. In my case, as I mentioned, I’ve been here for quite a while and I had a lot of fun and enjoyed watching Netflix grow and be part of the amazing engineering teams behind it. But quite frankly, it’s really hard for me to summarize the base concept like use cases, there are so many different aspects of Netflix engineering and challenges, and that there are so many different, amazing things that have happened. So I’ll probably focus a little bit more on some of the bits and pieces that I had on the opportunity to touch. And for me, the big part of the success of growth was actually a step above the pure engineering architecture. It’s firstly rooted in the engineering culture because the first Netflix employees are great people. But second and most importantly, it really enables them to do the best work and gives them a lot of opportunities and freedom to do so. And with that empowerment and freedom to implement the best and to do the best work, I think the engineers are truly opening themselves up for the best possible solutions that really advance the whole architecture and the whole kind of service domain. On the technical side, in my experience, what I think was fundamental to effectively scale infrastructure is the balance that we have had between innovation and risk. And in our case, many fundamental components of our engineering infrastructure are designed to be extremely resilient to different failures and to reduce the blast radius, to contain the scope of different issues and errors. With that’s really embedded like this thinking about errors, thinking about failures, it’s really embedded in the mindset and that leads some of the solutions and some of the implementations to be really robust and really resilient to some of the huge challenges and lots of unexpected demands. And in that aspect is that many systems I designed and thought of to scale 10 X from the current state. So that’s often when we think about the design, we don’t think about today. We think about the 10 X scalability challenge, and that includes both architecture discussions and some of the practical things like performing the skill exercises constantly and stress testing our system, both existing and proposed solutions and constantly making sure that things can scale. So in case, we have unexpected growth, we have confidence that we can manage it. And I think as a result of that, we are not only getting an architecture, that’s stable and scalable. But we also get an architecture that’s safe to innovate on, because we can do the changes with more confidence that we can roll back things. We have confidence in our testing and tooling and with that confidence, I think it’s much as much easier to apply and do your best.

Sachin: Interesting. So you spoke about designing for innovation as well as being resilient and then kind of designing for a 10X scale in the very beginning. So typically, and this is my experience and I may be wrong here, but when we were younger in our journey as a software engineer, right, we tend to get biased towards building out the solution very quickly and, do not have that discipline to kind of think about the long term scale and all of those challenges, because that is very deliberately put that in place. Right. So, so has there, like, how did your journey kind of evolve in that? Are there any tools, techniques that you use to kind of force yourself to come up with the right architecture? Could you talk a little bit about that?

Sergey: Well, so I think you were what you touched upon a really great point, but it’s, I would say it’s a slightly different dimension, a bit more of a trade-off between the pace of innovation and sort of the technical debt, the quality of code, so to speak. And I think this is an extremely broad topic, uh, with where I would say their answer would really depend on their application domain. For example, I would give you one answer if you were working on some medical or military services, versus some ways like a social network, consumer and product entertainment sort of services because the risk of failure and the mistake is completely different in that case. And I think another factor comes from the understanding of the problem. There is, I think, a big difference in designing the system for the problem that you understand really well, and you have a pretty good idea that it’s there to stay for quite a while versus more of an exploration where you’re not exactly sure whether this would work or not. You are still trying to kind of get a hand at it. And, uh, quite often you start with a second, with a latter option, and that’s what made you start to do. And I would say that in that case, uh, in my personal experience, I think it’s much more productive to focus on the piece of innovation. And, uh, maybe in some cases build some of the technical debts, maybe in some cases to compromise some of the aspects of the best practices but being able to get things out and get some kind of bits and pieces really quickly and learn from it. And since you are relatively lightweight, it’s much easier to pivot and change direction. At the same time, it doesn’t mean that we all have to be Cowboys and break things here and there. There is a balanced approach. You can still invest in the core principles and the core architecture that allows all those things innovations to happen safely. And I think at Netflix, that’s what really we excelled at. We have some of the core components, some of the core tools that are available for most of the engineers. That’s allowed to make things, uh, and innovate safely while not being overly burdened by some of the hard rules and, uh, some of the complicated principles and gain that experience. And I would say this is sort of a natural process. You have something that’s done relatively quickly. Then you were at this kind of crossroads. Whether now you know, this is a real thing and you’ll have to scale it. And then you would likely apply a different way of thinking or maybe it doesn’t work and well you save a bunch of work by not overcommitting to something really big before confirming that this is useful. And at this point when you were on the road to actually build it for the long term, it might be the proper solution to rebuild what you’ve designed in the past. And it might sound like you were wasting a lot of time. Like you’re doing the double effort. But the way I see it, there’s actually, you’ve saved a lot of time because you were able to relatively cheaply test a bunch of lightweight solutions. You got the confidence, what really works. And now you’re only investing a lot of resources on building the long term for the one thing, and essentially you’ve saved all the time by not doing that for all other ideas that you’ve had. Um, I have them all, it’s sort of a 20, 80 rule that takes 20% of the time to build a working prototype and it takes 80% of the time to productize that and make it resilient and scalable. Um, in many aspects of innovation, it makes sense to start with the 20 and only go for the 80% over time. Yeah, but as I mentioned, it doesn’t mean that everything has to be all or nothing. There are still major principles and it definitely makes sense, especially as you get larger to invest in the main building blocks to enable those things to happen safely. There are always some of the quantum principles that are cheaper and easier to follow in all scenarios. I think one of my favorite books that I was lucky to read early on is the Code Complete by Steve McConnell, which goes into the lots of fundamentals about just writing good and maintainable code, which in most cases doesn’t take more time to write. I just need to follow some relatively simple guidelines.

Sachin: Gotcha. That’s a very interesting perspective. If I were to summarize it, you were saying that, uh, architecture design is context-dependent. You got to know what the problem is and what you’re optimizing for. And sometimes you’ll go for something lightweight and then optimize it later on because the speed of innovation is also important, but there are always certain principles that one can use without really increasing the development time, certain strong arteries that can help in building robust code. So that’s, you know, definitely interesting. Uh, another fun question. Do you get time to watch any shows, movies on Netflix, and if so, which one’s your personal favorite?

Sergey: Yeah. Well, while often I don’t have a ton of time to watch I definitely love to have an opportunity to relax and enjoy a good show and Netflix is naturally my go-to place for doing that. And, I’m in a losing battle to keep up with all the great shows that I would like to watch. And, um, it’s quite hard for me to choose one favorite. So I think I’ll cheat and I’ll choose a few instead of just one. So I hope you’re fine with that. I think one thing is I’m a fan of sci-fi as a genre and I really enjoyed Altered Carbon, especially the first season. And over-time I’m also learning that I’m affectionately a fan of bigger shows that I have no idea about. And the one title that I really enjoyed was ‘The End of the F***in world’, which is a dark comedy-drama. It follows the adventures of two teenagers. It’s a really kind of unique piece of content and I truly enjoyed every episode of it. I’m really glad that as a company, we really invest in more and more international content, not just coming from the American or the British world. And the latest favorite for me was ‘The Unorthodox’, which is a German American show with most of the dialogues actually in Yiddish, which is a part of the Orthodox Jewish culture. I enjoyed both the personal story and I also learned a lot about it because I had no idea about this part of the cultural experience for some of the folks. I was both enjoying the ways, done the story behind it, and it had a huge educational component.

Sachin: Thanks for sharing that. So moving back to the technical discussion. So you worked at multiple organizations, you know, Intel, Microsoft, while having the bulk of your time you have spent at Netflix. If you were to look back and think about one or two major technical challenges that you faced and is there something that you would like to talk about and more so along the line of how did you overcome it?

Sergey: Sure. So I think I’ll probably choose one of my favorites. And I think that’s the biggest challenge that I can recall probably by far. And that was my first major project when I joined Netflix. So the task was to build the monitoring seal system for the new CDN infrastructure. And, that was really quick as the task quickly forwards after I joined the CDN group at Netflix. As I mentioned, I was relatively early in my career. I was relatively inexperienced. I know very little about this domain and there’s a huge infrastructure that’s about to like, is being built and we are migrating a lot of video traffic on it. And this is a huge amount of traffic. At that point, Netflix was about one-third of all downstream traffic in North America. So like a third of the internet is there. And here I am like a new employee, that’s not like, Hey, let’s go see some that will tell us how we do like that. We’ll monitor the main state of the system. Like you will, you’ll have to design the main metrics. And really design the system end-to-end on both the backend and the front end, that of UI. And in the true Netflix culture was given the full authority to make its own tactical decisions on product design and implementation. So it was just a full-on like, here’s the problem context, please go and figure it out and we are sure you’re, you’re going to agree. And The biggest challenge of all of that is that many aspects of the system were new and quite unique. And even the folks who were working on this history for a long time, they were quite upfront that we are learning as we go in many ways. So we cannot really give you the precise technical requirements, but we actually wanted to look at. And overall we wanted to keep the whole system and the approach to the monitoring as hands-off as possible, just to make sure that the system reflects some of the architectural components, which reflect some of those principles like a self-healing system that’s resilient to individual failures. So I had to fully understand the engineering solution. I had to model it and there, in terms of the services and the kind of data layer. I had to look at and partner really closely with the operations team to learn a lot about how the system performs, what metrics we should look at, what’s noisy, what’s not. And it’s been quite a ride but especially remembering that was an extremely fun challenge. And I think some of the things that were fun like: a) That I was very unexpected, given the huge responsibility on a pretty critical piece of Netflix infrastructure stack and I was given full control of what I’m using for that. And I could either choose something that I’m comfortable with or something that’s completely new to me. There were really fun interactions with various folks, even though some of my teammates were not necessarily experts in building cloud services or building UIs. There were many other folks at the company who were extremely open and helpful to get me up to speed. I think some of the things that have allowed me to where success is that system is still used today with lots of components still the same as they were built many years ago. I think I made the right decision to focus on very quick iteration. As a matter of fact, the first version of the system fully ready for production and actually used by the on-call by the operations team was done in about two months. And that with me learning how to deploy ADA services in the cloud. I chose Python as a framework, and I knew very little about it before I learned the new UI framework and kind of built the front end in the browser for it. But focusing on the initial core critical components and getting something working was a huge help because it allowed me to build a full feedback loop with the users and started to start learning about the system. And then that calibration of the stakeholders allowed it to iteratively evolve it over time. And even though I didn’t know a lot of different things early on, I was extremely flexible and adaptable. I think some of the key things that were critical for my success to get it done is my ability to wear my mistakes, to be very upfront about mistakes, and actively seek help. And I think that’s one thing that I often notice, different people are not doing for various reasons. They think that it’s not the key to make mistakes, or they are somewhat unskilled or unqualified if they ask for help. For me, it’s been always the opposite. No one, nobody knows everything. Nobody’s perfect. Everyone, everyone makes mistakes. And, uh, the sooner you realize it and the more upfront and open you are around those aspects. The better you’ll be able to find the ideal solution and the faster you’ll be able to learn over time.

Sachin: Right. So it would have been a lot of confidence for you back in that time. Like you said, you were early in your career and the organization just said, Hey, this is your project. You have complete authority to just go out and do. And when we know, we’re sure you do the right thing, it must have also given you a lot of confidence, right?

Sergey: Well, quite honestly, initially it didn’t. Initially, it freaked me out because I was especially after companies like Intel or Microsoft, where their approach is very different. And I only had a few years of experience and I was not a well-known expert. That was very unusual. It was very scary. I would say the confidence really came months later when I was starting to see that the key is something that’s been built, that’s been used, I’m getting good feedback. And people are thanking me for working on that. They are giving some constructive feedback. They make suggestions, and I’m becoming the person who actually knows how to do it. Then in some of the domains, I’m becoming the most knowledgeable person, which is natural when you’ve worked on that. I would say confidence really came at this point, which was many months after that I would say probably a year or so. Maybe even after that.

Sachin: Got it. That makes sense. So, moving on to the next question, do you believe engineers should be specialists or generalists and how does this really impact career growth in the mid to long term?

Sergey: Yeah, that’s a great question. And personally, I don’t think there is one right style. To me, it’s like comparing what is more important, front end or backend. I think any effective team requires both types of personalities. And for nearly any major project, you need to rely on those because if you think about it, if you have a team of only specialists, you’ll have really well done individual pieces of the system, but it will be really hard to connect them together. Similarly, if you only have generalists, you may have liked a lot of breaths, but it would be really hard to actually build truly innovative aspects of the products because that’s the point of focusing on the one area that you have to give a compromise and not know something else. I think ultimately for effective teams, you need both times and you really need to have effective and efficient communication between both groups of them. You need them to be able to work together as a very well-aligned team. Uh, so yeah, I think for me personally, like what type of engineer to be is more of a personal choice. And also in my experience, there have been many opportunities to change the preference. You don’t have to necessarily pick ones and stick to that. You can mix it as you can go into one area or another. In my case I’ve been a specialist at some point and actually in the early stages of my career, I was probably the most specialized. When I was at Intel, it was a heavily dedicated area focused on computer graphics. I was optimizing some of the retracing algorithms and methodologies, what specific types of the network of Intel hardware. So it was all of low-level C, assembly, and some of the specific Intel instructions for, to get the most out of it. At Microsoft, I worked on search and some of the developer experience, then I switched to network and networking. So it’s, it’s sort of a mix. So I think I was becoming more of a generalist over time. On the tactical stuff, but still, I’m specializing in which area on the larger area. But this is also a personal choice and the industry and the technology is moving so fast that even if you were the expert in one area, very specialized today, in fact, years, you might, if you’re not keeping up, you might be off-site or that area is not everything. And you don’t have to stay there. You may find the passion somewhere else and switch to it. Or you can always stay as a generalist and just explore and move alongside technology growth.

Sachin: Yeah. So if I, if I were to summarize that, uh, you’re saying teams eventually need both kinds of engineers, and it really boils down to a personal choice, whether you want to be a specialist or a generalist, but, you know, given the current pace at which like you said, technology is evolving, it’s really hard to just be narrow jacketed into one thing, you know, because things around you would just constantly change and then you’ll have to adapt to them.

Sergey: Well, I think it’s on the latter point, I would say, I would say really depends. There are some of the areas that remain relevant, uh, for quite a while, for example, talking about the networking area, we’re still using TCP and that’s the technology from the 1980s. And there is still a lot of really interesting research and developments going on. And if anything, in recent times, the pace of development has accelerated. And yet, someone who specialized in that in the nineties would be still very relevant today. So in some of the areas you can still, you can specialize and you’ll be growing your influence. You’re growing your impact over time, but there’s no guarantee and it’s really hard to predict those areas. So I think, well, if you’re really passionate about it, it makes sense to stay. But I would say you should always be ready to pivot go and dig into something else.

Sachin: That makes sense. So another fun question, which software framework or tool do you admire the most?

Sergey: I think my answer will be probably quite boring at that. I’m pragmatic, I don’t have a favorite intentionally. I tend to follow the principle that there is always the right tool for the job. And as that principal and trying to avoid any sort of absolute beliefs or absolute favorites. Having said that, uh, the very few frameworks that I personally like and they’ve helped me quite a bit. I like Python quite a bit for its simplicity, its flexibility. From personal experience, it’s one language I was able to deliver a fully usable work in projects that are being consistently used for several years after in just two weeks. And before those two weeks, I barely knew Python. So I think that shows the extreme power of the language, how easy it is to pick up and do something actually practically useful. Related to Python, I like pandas quite a bit, which is a statistical library with some of the ways to do time serious or data frame analysis. From the network world, I should mention Wireshark, which is a general tool and it’s fantastic and definitely go-to for me to understand all that happens on the network communications at an insane level of detail. In terms of overall impact, I should mention the Hive, which is a big data framework. While it’s becoming sort of obsolete technology right now replaced by Spark and all of the following innovations. I think it’s really created a revolution in many ways. In its own time, creating, making it possible to access enormous amounts of data, very easily using the very familiar SQL like language. And for me, I happen to use it around the time and it really had a massive impact on a number of insights into things I was able to do.

Sachin: Interesting. I agree with you on the Python bit. I myself learned Python very quickly and saw the power of the framework and the versatility in terms of the things that allow you to do, like there’s hardly any industry domain, where, where you can’t use Python to very quickly prototype. Right? So in that sense, it’s a very powerful and versatile framework. Thanks for that. Let’s move on to the next one. You know, given the current scenario around COVID-19 everybody working from home, what’s your take on remote engineering teams? Personally, what do you feel about remote work and you mentioned that your work involves a lot of cross-team collaboration? So how has that been impacted positively or negatively in recent months?

Sergey: Yeah, so I think for the first question for remote work in general, the group that I’m in the content delivery group at Netflix, we were remote from the ground up. So our teammates, they are all scattered around the globe all the way from Latin America, to the US, to Europe, to Asia and all the way to Australia. In terms of working remotely we’ve figured out the way to do it very efficiently, but what’s challenging is that now we are a hundred percent remote because what you’ve done in the past, like some of the folks that are in the office, like in Los Gatos in California, some of the folks that are working from home and we effectively collaborate with each other, but every quarter we will do what we call the group of sites where everyone would get together in the same place. We will have a number of meetings and discussions, both formal and informal, where you’ll be able to sort of put the actual person to their image that you see on the screen. And you’ll be able to really know those persons, those folks, your teammates outside of their direct work domain. In my experience, that’s hugely impactful in terms of affecting your future interactions and building a relationship and working together as efficiently as possible. And with today’s COVID-19 world, we are losing that. So we are 100% remote and even though it hasn’t been a hugely long period of time, based on some estimates, it might take a while for us to work the way. And, it’s a challenge not to have some of that context and to lose some of this nonverbal thesis of communication. To your question, it’s also much harder to build new relationships. I would say it’s still possible to sustain some of the relationships that you’ve built from the past based on previous work together, previous interactions. But when you have to meet a new partner or when there is a new person joining the team, it’s extremely hard to find the common commonalities or find the same language, when you only have a chance to interact via chat or VC. I would say we are definitely trying different things to fix that. We haven’t found the perfect solution. We hope to find it. I would say we also call that you won’t have to find it for the longterm. Hopefully, the COVID-19 situation will be addressed as quickly as possible. But yeah, that’s the very few things that I would say that’s becoming even more critical. First is extremely clear and efficient communication. It becomes paramount and the sharing of the context, and especially from the leadership side, it becomes extremely important to make sure that everyone is on the same page. And that you really need to double down on all of the context sharing in that sense. And, uh, in terms of the partners, I think it’s extremely important to make sure that folks feel safe when they work that way. Because as part of not having a chance to talk face to face, it’s a great environment too, uh, for some sort of or kind of fear and paranoia to build up. Um, it’s harder to make sure like how you’re doing, how things are going, especially when there’s lots of stress happening on the personal side as well and there is lots of research that shows that we are not productive when we are experiencing high levels of stress. And, uh, I would say that’s on the individual side. It’s really critical to make sure that both yourself and all the partners around you are feeling safe and in the right state of mind primarily. And then it comes down to where something that’s really difficult, which is building trust between each other to do the best work. Even in the case, when you are very far away from each other, you really need to make sure that once you share it’s all the context about the problems, about the solutions, about the ideas. You have the full trust in others to do the best work to address some of the things and help you with some of the things or ask you for help as well.

Sachin: Got it. That makes sense. I completely agree with you on the fact that. Having a shared conversation in person is definitely different from having it over video and the kind of relationships that get built subconsciously is very, very hard to replicate that on video and, and I’m with you that hopefully, we can safely return back to work at some point in time sooner, rather than later.

Sergey: In the meantime, but one sort of thing that we are doing is that we are making sure that we still communicate informally. One thing that we do as a team, we have three times a week, we have a virtual breakfast. If someone can’t make it that’s okay. But otherwise, folks just have an informal breakfast together. And we tried to talk about things unrelated to work, uh, just any subject, basically something that you would have as a conversation if you went for the team lunch outside.

Sachin: That’s interesting. And is that working out well, like, do you see people interacting and joining these discussions?

Sergey: In my opinion, yes. I think personally I feel much more connected after those things. When I have an opportunity to hear and see folks discussing aspects outside of the specific tactical work domain. I think it’s useful for others. It’s good for morality. And I’m seeing that many other teams experimenting with different ideas along the same lines.

Sachin: Nice. So, onto the next question, you know the tech interview process is talked about a lot. People have their different opinions. What’s your take on given the current norms around tech assessments and interviews? What do you think is unoptimized today or what in your opinion should be changed?

Sergey: Cool. Would you mind clarifying, are you asking specifically about the current, highly remote situation or interviewing in general?

Sachin: Tech interviewing in general, the process that, you know, that is there. I’m assuming Netflix, other than the cultural aspects, maybe from a talking perspective and your previous organizations have had similar methods or processes. So do you think there’s something that we could do better? Not in the context of COVID-19 per se, but in general.

Sergey: All right, got it. I think it’s generally, I think there are lots of challenges with a typical interview process. And if you think about it, the typical interview experience where we have someone coming in for 30-40 minutes, solving some of the specific problems on the whiteboard, or sometimes on the shared screen, it’s not exactly what we experience in the day to day life. Quite often the problems are not very well defined, but you very rarely have specific constraints on time to solve it. Most of the time or I hope almost all of the time, there is much less stress in the typical work environment and you’re relating the person to something that they might not have the subtle experience in the workplace. At Netflix, many teams do try different – different approaches. We don’t have a single right way that everyone has to follow. Depending on the team, depending on the application domain, often depending on the candidate, folks will try to adjust the interview process. In our case, what we have tried and what we genuinely try to do, we’re avoiding very typical whiteboard questions. We try to focus on some of the problems that are much closer to real life. We try to lean on some of the homework, take-home assessments if possible. If the candidate has time to perform that and a general, I think this gives a much better read of the candidate skills because they can take it in the environment that they’re used to. There is no stress. There is not someone looking over the shoulder. And you can assess a much broader range of skills, not just a specific, like, I know how to solve it the way I don’t know how to solve it, but how do you write code? How do you document that? How do you structure it? And in some cases like even how do you deploy it? And those operational aspects of coding is a big part of engineering life, which are extremely important to assess as well. And I would say generally it’s a huge benefit if a candidate has something to share in the open-source and the open environment. If they have a project that someone can just follow or can take a look at the code, I would say that’s one of the best assessments of the skills it has just working, that’s been used, and that has been produced. It still doesn’t cover all aspects of it. It’s really hard to assess the qualities like teamwork or some of the compatibilities with the teammates. Um, those areas tend to be quite freaky. Um, and honestly, I don’t think I have any ideal solutions for that other than to make sure that as many partners for the new hire as possible are actively participating in the interview process. They have the ability to chat a little bit more and get an idea of whether they can work with a specific person and achieve strategies to do that depending on the team size or particular situation.

Sachin: Got it. So if I were to summarize this, if the interviewing process can be as much as possible, close to the actual work that you’ll be doing, while eliminating or reducing the stress that one goes through in the interview process, that should bring out a more fair assessment of the candidate.

Sergey: I would say, yeah, at least that’s the general strategy that in my experience, in the interview processes, I tend to follow.

Sachin: Interesting. So, another fun question, if not engineering, what alternate profession you would have seen yourself excel in?

Sergey: I would say it really depends on the time when you would ask me. I happen to get excited very easily and my immediate passions change quite frequently. As of recently, I would say I could easily find myself having a microbrewery or running like a barbecue-style restaurant. So those are the two things that I found interesting and I’m doing quite consistently for the last few years. I homebrew in my garage. I also have a few kegs of homebrew on top. And I have three grills in my backyard and those things complement each other very nicely and they bring lots of joy to myself and my friends as well.

Sachin: That’s really nice to know that you have a home brewery and you said you’ve been doing it for two years now.

Sergey: Uh, well, I would say more about five years.

Sachin: That’s an interesting hobby. Uh, so, you know, with that we are almost towards the end of our podcast. The final question today: So if there was like one tip that you could give to your peers, people who are at a similar role and even to those people who want to step up and, you know, come to a role where you are today, what would that be?

Sergey: I think I would respond with sort of a catchy phrase from our Netflix culture deck. And I think that defines the leadership style that the company tends to follow and that I personally strive for, which is leading with context and not control. And what that means is that as a leader, learning to gather, summarize, and effectively communicate the most critical goals and challenges that the business, you, your group faces and effectively share it with the team but trust the individual contributors and your partners to find the most optimal solution and execute it and not trying to do both at the same time, which is really hard to do it, but that’s, that’s what often happens. Because I think that empowering the folks with the proper knowledge and the kind of context around the problem, encourages folks to fully own it and better understand it and they become much more committed to that. And that has a much higher chance to provide the best optimal solution versus the situation when someone just tells you what to do like ABC. And that you’ll get more commitments. I think it inspires folks to grow much more. And I think overall it makes the person who is able to foster such an environment a much better leader, which is also extremely challenging to do. You’ve asked me for advice like for the managers, directors. I’m not sure I’m qualified to give that advice. Uh, it’s more of some things that I’m working on to prove myself and, as someone who is relatively new to their engineering leadership role, I’m finding lots of challenges and struggles, and also those things where you feel like, uh, you might know various aspects of the solution, but you don’t really have to be actively involved in every bits and piece of it and balancing those things is a huge challenge. And personally, as I progress on those, I see that I’m becoming more efficient and more useful for the group and for the company. And I think it’s a kind of ideal and useful goal to live by.

Sachin: So it’s more about empowering people so that they can find their own solutions. And then certain times you may even have the right solution in your hand, but you don’t want to do it because you want the people to fight their own battles. And maybe they come up with something completely different that you might not have imagined. So fostering that innovation is important.

Sergey: Yeah. I would say empowering with the context around the solution and empowering down with the trust for them to execute on it and fully own the implementation.

Sachin: Makes so much sense. And I think you’ve gone through the same in your journey at Netflix. From the early days, you got the context and you got full control.

Sergey: Absolutely. Yes, I experienced that and the full power of it as an individual contributor. And now I’m actively trying to get better at doing that for others as well.

Sachin: Yep. That makes sense. Sergey, it was a pleasure having you today as part of this episode, I really appreciate you taking your time. It was informative and insightful, and I definitely enjoyed listening. I hope our listeners also have a great time listening to you.

Sergey: Thanks a lot, Sachin! session. It’s been a pleasure to have a chance to share my story.

Sachin: Thank you. So, this brings us to the end of today’s episode of Breaking 404. Stay tuned for more such awesome enlightening episodes. Don’t forget to subscribe to our channel ‘Breaking 404 by HackerEarth’ on Itunes, Spotify, Google Podcasts, SoundCloud and TuneIn. This is Sachin, your host signing off until next time. Thank you so much, everyone!

About Sergey Fedorov
Sergey Fedorov is a hands-on engineering leader at Netflix. After working on computer graphics at Intel, and developer tools at Microsoft, he was an early engineer in the Open Connect — team that runs Netflix’s content delivery infrastructure delivering 13% of the world Internet traffic. Sergey spent years building monitoring and data analysis systems for video streaming and now focuses on improving interactive client-server communications to achieve better performance, reliability, and control over Netflix network traffic. He is also the author and maintainer of FAST.com — one of the most popular Internet speed tests. Sergey is a strong advocate of an observable approach to engineering and making data-driven decisions to improve and evolve end-to-end system architectures.

Sergey holds a BS and MS degrees from the Nizhny Novgorod State University in Russia.

Finding actionable signals in loosely controlled environments is what keeps Sergey awake, much better than caffeine. This might also explain why outside of work he can be seen playing ice hockey, brewing beer, or exploring exotic travel destinations (which are lately much closer to his home in Los Gatos, California, but nevertheless just as adventurous).

Links:
Twitter:@sfedov
Website:sfedov.com

Subscribe to The HackerEarth Blog

Get expert tips, hacks, and how-tos from the world of tech recruiting to stay on top of your hiring!

Author
Arbaz Nadeem
Calendar Icon
June 26, 2020
Timer Icon
3 min read
Share

Hire top tech talent with our recruitment platform

Access Free Demo
Related reads

Discover more articles

Gain insights to optimize your developer recruitment process.

Gamification in Recruitment: Engaging Candidates With Interactive Hiring

Gamification in recruitment involves integrating interactive, game-design elements into the hiring process, transforming what were once passive tasks into engaging experiences. This innovative approach is not merely a novelty; it is a validated methodology that delivers measurable business value. Research indicates that game-based strategies are proven to boost applicant engagement significantly, with documented increases of up to 40%.

Traditional screening methods are failing

The contemporary talent market presents a significant challenge to HR leadership: achieving high-volume efficiency while maintaining high-quality selection. Traditional recruitment methods, reliant primarily on curriculum vitae (CVs), applications, and sequential interviews, are demonstrating systemic failures in meeting this dual mandate. These processes inherently rely heavily on subjective judgment, which is well-documented to introduce significant unconscious biases and yield low predictive validity regarding a candidate's eventual success in a specific role.

The high digital volume of modern job applications compounds this problem, creating systemic friction characterized by high time-to-hire (TTH) metrics and a resulting poor candidate experience (CX). When candidates perceive the application process as tedious or unfair, they often disengage, leading to high dropout rates. This systemic friction suggests that the inefficiency of traditional screening processes is directly proportional to their subjectivity. Gamification emerges as a crucial strategic intervention, designed to replace subjective review with objective, quantifiable behavioral data.

Defining the Discipline and Its Deep Roots

Defining Gamification: Mechanics vs. Serious Games

Gamification is formally defined as the application of game design elements and principles into non-game contexts, specifically within the Human Resource Management (HRM) domain.

This practice leverages typical elements of game playing, such as point scoring, structured competition, and defined rules, and applies them to business activities like recruiting, employee training, or sales force management. In the context of talent acquisition, gamification involves applying game technology—including game theory, mechanics, and design—to attract, select, onboard, and develop employees.

It is essential for HR leaders to distinguish gamification from the concept of "Serious Games." Serious Games are full, self-contained games created for a non-entertainment purpose, such as advanced skills training or simulating complex operational environments. Conversely, gamification is the integration of elements or mechanics (like a leaderboard or a progress bar) into an existing business process (like a standardized candidate screening module). The critical distinction lies in the nature of the integration: gamification enhances the experience of a routine task, whereas a serious game constitutes the task itself.

Leveraging intrinsic and extrinsic motivation

The effectiveness of gamification is rooted firmly in organizational psychology and behavioral economics. Gamification techniques leverage powerful, innate psychological desires, including the need to socialize, learn, master, compete, achieve status, express oneself, and more. By integrating game elements, the system can capture the user's attention and direct their behavior toward specific business objectives.

The critical mechanism is the transition from extrinsic motivation (working for a paycheck or a job offer) to intrinsic motivation (the joy derived from competence and progress). By tying milestones and achievements to recognition, employees and candidates gain a sense of progress similar to advancing levels in a video game. For instance, providing badges for meeting certain metrics or recognizing performance on a leaderboard can incentivize engagement. This triggers the Mastery-Status Cycle: gamified assessments succeed because they subtly shift the candidate's focus away from the high-stakes, extrinsic reward (the final job offer) toward the immediate, intrinsic reward of demonstrating mastery and competence within the assessment environment. 

Core game elements in HR contexts

A successful gamified recruitment system utilizes a suite of well-tested game design elements. These mechanics include points, badges, leaderboards, avatars, performance graphs, and meaningful narrative stories. In the hiring context, these elements are strategically applied:

  • Points and Badges: Candidates earn points for completing specific tasks, achieving assessment milestones, or demonstrating required skills.
  • Progress Bars: Visual representations of completion rates and progress keep candidates motivated, ensuring they maintain momentum through lengthy application sequences.
  • Leaderboards: These foster healthy competition and can be used to unlock later interview stages based on assessment performance.

The application of these elements turns the traditionally dull, one-way steps of screening and testing into engaging, interactive experiences.

Strategic benefits and operational impact

Enhancing Candidate Experience (CX) and employer branding

Gamification transforms the often stressful and bureaucratic recruitment process into a more enjoyable and interactive journey. By making the process feel like "play rather than a chore," gamification substantially increases candidate motivation and investment in the application process. This change in approach is particularly resonant with the modern workforce, especially Gen Z, who are accustomed to interactive technology and value corporate innovation.

Furthermore, gamification is a powerful tool for employer branding. Companies that utilize game-based assessments showcase their culture as modern, innovative, and focused on candidate welfare. Candidate desirability is directly linked to this innovation; research indicates that 78% of applicants stated that the inclusion of gamification in the hiring process would make an employer more desirable.

Data-backed, objective candidate evaluation

A core benefit of gamification is its ability to transition hiring from subjective judgment to objective, quantifiable measurement. Traditional interviews and assessments are susceptible to human biases, but gamified assessments provide objective results based on how candidates behave and perform within realistic, controlled scenarios.

These tools gather rich, multi-faceted data, enabling recruiters to assess skills, cognitive abilities, emotional intelligence, and personality traits, providing a comprehensive 360-degree view of a candidate’s capabilities. Instead of relying on resume keywords or self-reported capabilities, employers can observe candidates demonstrate real-world skills through interactive tasks and simulations. This data-driven approach allows hiring managers to make better decisions, ensuring the selection of candidates who possess the right attributes to succeed in the role and thrive within the organizational culture.

Efficiency gains and time reduction

Efficiency in talent acquisition is fundamentally improved through process automation and standardization. Gamification automates significant aspects of the recruitment process, particularly screening and assessment, which allows hiring managers to concentrate their limited time on the most promising candidates. Since gamified tests often take only minutes to complete and provide instant results, they are highly effective time management tools.

The substantial reduction in time-to-hire (TTH) is a direct consequence of standardizing the assessment input. By requiring all candidates to engage with the same objective metrics, HR can leverage technology for rapid, bias-free elimination, accelerating the high-volume top-of-funnel (MoFu) activities. Measurable results include a demonstrated 40% shorter interview cycle and a 62% higher offer ratio in implementations involving gamified skills assessments. Unilever, for example, successfully reduced its overall screening time by 75% using science-based mobile games.

Mitigation of unconscious bias and increased diversity

One of the most profound benefits of gamified assessments is their effectiveness in removing hiring bias. Since games are designed to focus purely on behavior and performance, they naturally mitigate the influence of irrelevant demographic data, educational background, or professional pedigree. Gamification provides objective insights, allowing organizations to hire for potential rather than solely on past achievements.

To avoid unconscious bias, gamified systems typically employ two key mechanisms:

  1. Blind Scoring: Candidates are evaluated solely based on their test results. The hiring team sees the quantitative assessment scores first, before any identifying information, such as the candidate’s name, resume, or photo, is revealed.
  2. Anonymized Candidate Profiles: This process ensures that personal details, including gender, age, education level, or other protected demographic characteristics, are not visible to the hiring manager during the initial decision-making phase, ensuring the selection is based purely on objective performance.

By focusing on competence and potential, gamification effectively expands and diversifies the talent pool.

Measuring performance and validating investment

Does gamification in recruitment really deliver results?

Gamification in recruitment is definitely supported by research and statistical evidence demonstrating measurable, tangible results. It offers concrete improvements across key areas of the talent lifecycle.

Quantifiable evidence of success: metrics that matter

The performance of gamified processes can be quantified through various metrics:

  • Engagement: The interactive nature of gamified experiences significantly increases user commitment. Engagement rates show a 48% increase when the work experience is gamified, and 85% of users state they would spend more time using gamified software.
  • Efficiency: Gamified skills assessments dramatically compress the hiring timeline. Data supports a 40% reduction in the interview cycle and a 62% higher offer ratio, demonstrating accelerated progression through the funnel.
  • Retention: Leveraging gamification in the onboarding process has shown a documented capability to reduce employee turnover rates from 25% to 8%.
  • Desirability: The modern approach makes the employer brand more attractive, with 78% of applicants viewing employers with gamified hiring processes more favorably.

Calculating Return on Investment (ROI): The strategic view

Measuring the return on investment (ROI) from gamification presents unique challenges. While the operational results (e.g., reduced TTH) are robust, quantifying the financial ROI can be difficult due to the complex cost structure. Initial development, continuous creative updates (avatars, new challenges), ongoing community management and policing, and crucial compliance/legal costs can cause the overall cost of recruitment-focused games to escalate.

To mitigate this complexity, HR leaders must frame gamification as a strategic infrastructure investment characterized by high capital expenditure (CapEx) and continuous operational expenditure (OpEx). ROI validation must therefore shift from short-term transaction costs to longitudinal metrics, focusing on the quality of hire (QoH) and the cost savings associated with reduced attrition and significantly shorter TTH. 

Metrics for evaluating gamification ROI and success

The success of a gamified recruitment system is best evaluated by comparing baseline hiring data against post-implementation results across several key performance indicators (KPIs).

Metrics for Evaluating Gamification ROI and Success

The future of interactive Talent Acquisition

Gamification represents a foundational, unavoidable shift toward a more insightful, fair, and immersive approach to talent acquisition, positioning it as a significant component of the future of hiring. As technology continues to evolve rapidly, gamification is moving beyond novelty and becoming a necessity for maintaining candidate engagement and improving assessment accuracy.

AI-Powered Adaptive Assessments and Hyper-Personalization

The next evolution of gamified hiring will be driven by artificial intelligence (AI). Future game-based assessments will be adaptive, dynamically adjusting their difficulty, pacing, and scenario complexity in real time based on how candidates perform. This adaptation ensures the assessment is neither too easy (failing to measure peak performance) nor too hard (leading to frustration and dropout), thereby capturing the candidate's true capacity and maximizing the predictive insight collected.

Immersive reality (VR/AR) simulations

Virtual Reality (VR) and Augmented Reality (AR) are poised to dramatically increase the fidelity of gamified assessments. Immersive environments will move assessments closer to the physical reality of the actual job. This technology will enable the testing of complex, integrated competencies that are difficult to measure in a flat digital environment, such as collaboration under stress, fine motor skill precision, or complex spatial reasoning within a simulated work site. The use of VR/AR makes assessments feel increasingly like real work, providing unprecedented behavioral data.

Predictive analytics and performance mapping

The future of talent technology will prioritize the closure of the feedback loop. Advanced tools will correlate gamified assessment data directly with long-term job performance, tenure, and turnover metrics. By mapping the initial behavioral data captured during the game to subsequent on-the-job success, organizations can continuously refine and validate their predictive models, ensuring the assessments are measuring precisely what they are designed to measure—future success.

Ethical design and algorithmic governance

As the mechanisms for data collection become increasingly sophisticated, the emphasis on ethical design and fairness must increase commensurately. Transparency in assessment design and robust algorithmic governance are becoming critical requirements. HR leaders must insist on clear validation studies for any proprietary assessment algorithms, demanding proof of non-bias and external certification, ensuring that fairness remains a core tenet of technological adoption.

The trajectory of talent acquisition indicates that gamification is fundamentally shifting the hiring process to become smarter, faster, and more effective, underpinned by principles from organizational psychology and validated by technology. Its successful implementation allows companies to identify talent based on objective potential rather than subjective credentials. The strategic question for HR leadership is not whether gamification works, but how quickly the organization can strategically and effectively integrate it into its core hiring methodology.

Data-Driven Recruiting: How to Hire Smarter With Analytics

Data-Driven Recruiting (DDR) represents a fundamental strategic shift, transforming Talent Acquisition (TA) from a reactive, cost-based administrative function into a proactive, strategic partner.

DDR mandates the replacement of subjective judgment and intuition ("gut feelings") with verifiable, quantitative evidence across the entire talent lifecycle. By applying advanced analytics and leveraging statistical modeling, TA leaders gain the capability to secure executive budget approval by proving a verifiable Return on Investment (ROI). This report details the strategic necessity of this transition, outlining the essential analytical components.

Why conventional hiring falls short: The high cost of intuition

Traditional, intuition-led hiring processes introduce significant risks and costs that materially impede organizational performance, often leading to selection errors and high turnover.

The subjectivity trap: gut-based bias and selection error

Conventional hiring methods struggle to provide objective indicators of future job performance. Traditional, unstructured job interviews are notably poor predictors of subsequent success. These interactions are often highly subjective, allowing interviewers to judge candidates based on superficial or non-competency-related traits such as confidence or personal charisma, rather than actual job-relevant abilities.

Furthermore, reliance on human judgment at the screening stage actively reinforces biases that modern organizations strive to eliminate. Studies confirm that human recruiters are highly susceptible to unconscious bias when reviewing resumes and conducting interviews. 

This subjectivity introduces a critical bias-prediction paradox. If the selection process is fundamentally biased, it inevitably leads to non-optimal talent choices. Non-optimal selection, in turn, results in high early turnover and significant operational mis-hires. Therefore, implementing structured, data-supported assessment mechanisms is not merely a Diversity, Equity, and Inclusion (DEI) initiative; it is a direct operational necessity for reducing financial and performance risk. Methods like structured interviews and work sample tests—which are confirmed to be 29% more predictive of job performance than traditional interviews—are essential for overcoming this paradox.

Hidden inefficiencies and cost leakage

Without objective, measurable data guiding decisions, conventional processes fall prey to inefficiencies and the wasteful "Post and Pray" mentality, where recruiters passively wait for candidates rather than strategically targeting talent pools. When relying on poorly integrated or legacy Human Capital Management (HCM) systems, the process requires substantial manual data collection, which is non-compliant, time-consuming, and prone to critical human error.

The financial damage caused by ineffective screening is substantial. Recruitment processes lacking predictive rigor frequently result in mis-hires, sometimes referred to as "misfires." 

What is data-driven recruiting?

Data-Driven Recruiting (DDR) is the systematic process of collecting, analyzing, and applying quantitative insights from diverse talent acquisition sources to replace subjective intuition with objective evidence, thereby improving decision accuracy and predictable long-term outcomes.

Formal definition and strategic mandate

Fundamentally, DDR is the practice of making hiring decisions based on a wide variety of data sources that extend far beyond traditional measures like resume screening and interview feedback. A team committed to DDR continuously tracks the success of its process using a range of recruiting metrics, subsequently using the derived insights to iteratively refine and increase overall effectiveness.

Core components: The data ecosystem

The foundation of DDR rests upon a robust data ecosystem. The primary data sources include the organization’s HR technology stack, specifically the Applicant Tracking System (ATS) and specialized candidate assessment solutions. Data is strategically collected across the entire recruitment lifecycle:

  • Sourcing Data: Tracking effectiveness and cost-efficiency of channels (job boards, social media, referrals).
  • Selection Data: Objective scores from technical assessments, structured interview ratings, and work sample tests.
  • Experience Data: Candidate satisfaction (e.g., Net Promoter Score) and time elapsed between stages.
  • Post-Hire Data: Retention rates, new hire performance metrics, and productivity scores.

This approach represents a shift from basic HR reporting (describing historical outcomes) to predictive modeling. Predictive analytics utilizes historical data, statistical algorithms, and machine learning techniques to forecast future outcomes, allowing TA teams to predict which candidates are most likely to succeed in specific roles based on prior hiring success and retention patterns. 

Key benefits backed by data: measuring strategic ROI

The shift to DDR yields direct, measurable improvements across operational efficiency, financial health, and long-term workforce quality.

Financial optimization and cost savings

Data transparency allows organizations to rigorously track and optimize spending. By systematically identifying the most effective sourcing channels and implementing objective evaluation tools, organizations can deploy blind hiring and structured evaluations, which not only reduce unconscious bias but also minimize the frequency of costly mis-hires

Accelerated efficiency and speed

Data-driven approaches dramatically accelerate the speed of the hiring process by replacing manual steps with automated, optimized workflows. The implementation of predictive analytics accelerates decision-making by prioritizing candidates who match success criteria. Sourcing data can confirm that leveraging employee networks, such as through employee referral programs, is highly effective, with referral hires being onboarded 55% faster than candidates sourced through traditional means. 

Boosting quality, retention, and productivity

The primary strategic benefit of DDR is the ability to consistently improve the quality and tenure of new hires. Predictive analytics models, when implemented effectively, have been shown to reduce employee turnover rates by up to 50%. The ability to accurately predict success and retention simultaneously yields a substantial positive multiplier effect: reduced turnover inherently means lower CPH (fewer replacement hires required) and a higher overall Quality of Hire (QoH).

Real-world applications validate this impact:

  • Wells Fargo utilized predictive analytics to assess millions of candidates, leading to a 15% improvement in teller retention and a 12% improvement in personal banker retention.
  • A major UK fashion retailer, addressing an annual staff turnover rate of 70%, partnered with an analytics provider and achieved a 35% reduction in staff turnover by building a predictive model based on characteristics of high-performing, long-tenured employees.

Furthermore, structured, bias-free hiring processes inherently increase workforce diversity. The link between diversity and financial performance is strong, as companies with diverse management teams report 19% higher innovation revenue.8

Establishing the data foundation for TA success

A functional DDR strategy must be built on a rigorous foundation of objective metrics, moving beyond surface-level reporting to complex diagnostic calculations.

1. Fundamental velocity and efficiency metrics

  • Time-to-Fill (TTF): This critical metric measures the duration from the official approval of a job requisition until the successful candidate accepts the offer. It measures the TA function's efficiency in meeting organizational staffing needs.
  • Time-to-Hire (TTH): This focuses on the candidate experience, measuring the time elapsed from the candidate’s initial application submission to the final acceptance of the job offer.

2. Financial health metric: Cost-Per-Hire (CPH)

Cost-Per-Hire (CPH) is the average standard formula used to determine the total financial investment associated with securing one new employee.

A granular understanding of cost components transforms CPH from a simple reporting number into a powerful diagnostic tool for budget optimization:

  • Total Internal Costs include recruiter salaries, training, the expense of HR technology (ATS, CRM), and employee referral bonuses.
  • Total External Costs encompass direct outsourcing expenses such as job board fees, advertising costs, agency retainers, specialized pre-screening expenses, and candidate travel/accommodation.

By dissecting the CPH into internal versus external costs, TA leaders can diagnose specific financial inefficiencies. For example, if external costs are disproportionately high but the Quality of Hire remains low, the diagnosis suggests the sourcing channels are ineffective, and the budget must be reallocated. If internal costs are high relative to the number of hires, the internal process itself may be too long or resource-intensive. This analysis allows CPH to guide strategic budget reallocation for maximum ROI.

Cost-Per-Hire (CPH) Component Breakdown

3. Strategic metric: Quality of Hire (QoH)

Quality of Hire (QoH) is the most critical strategic metric, representing the long-term contribution of a new employee to organizational success relative to the pre-hire expectations.

The customizable nature of QoH

QoH is a complex, descriptive metric that must integrate both quantitative and qualitative data points; there is no single, universally agreed-upon standard calculation. Organizations must tailor the QoH formula, defining and weighting specific predictors based on departmental or strategic priorities.

The alignment of QoH inputs with specific business outcomes is paramount. By weighting performance metrics highly (e.g., 45%), the TA function implicitly commits to hiring individuals who achieve quantifiable, non-HR business KPIs, such as sales targets, code quality metrics, or customer satisfaction scores. The customization of QoH is the defining analytical act that aligns TA strategy directly with overall organizational performance.

A typical QoH calculation utilizes a weighted average structure.

Quality of Hire (QoH) Predictor Weighting Example

Elevating quality of hire: The role of advanced technical screening analytics

For roles requiring specialized, complex skills—particularly in engineering and technology—the "Core/Technical Skills Score" component of QoH (which may carry a 30% weighting or more) is notoriously difficult to measure objectively using traditional methods. Technical screening platforms address this challenge by providing verifiable, predictive data.

Advanced technical screening tools move assessment beyond superficial interviews by generating tangible data points on a candidate's actual aptitude and problem-solving methodology:

  • Spotting top performers with granularity: The platform enables recruiters to easily identify candidates who score above a specific percentile based not just on their total score, but also on granular factors such as time taken to complete the assessment or relevant work experience. This focus ensures that resources are concentrated early in the pipeline on the most promising talent.
  • Process analysis via codeplayer: The Codeplayer feature records every keystroke a candidate makes, replaying the session as a video that includes indicators for successful or unsuccessful code compilations. This provides rich qualitative evidence that complements the quantitative score, offering deep analysis of a candidate's underlying logical and programming skills. This data is invaluable for enhancing the post-assessment interview, transitioning the conversation from simple scoring verification to a nuanced discussion of problem-solving methodology, which is highly predictive of on-the-job efficacy.
  • Ensuring Assessment Integrity with Question Analytics: The accuracy of QoH relies entirely on the quality of the pre-hire assessment. HackerEarth provides a "health score index" for each question, based on parameters like the degree of difficulty, programming language choice, and historical performance data.  By ensuring the assessment content is relevant, high-quality, and reliable, the accuracy and predictive power of the technical evaluation are maximized, directly improving confidence in the final QoH score.
  • Test Effectiveness Measurement: Test Analytics features measure the overall effectiveness and difficulty of the assessment through hiring funnel charts. By tracking metrics such as the percentage of candidates who pass, the completion time, and the score distribution, TA teams can continuously refine the assessment structure, ensuring it functions as a strong, reliable predictor of future job performance.

Setting SMART recruiting goals: translating insights into actionable targets

Data analysis provides diagnostic insights, but strategic movement requires formalizing these insights into measurable objectives using the SMART framework.

The SMART framework ensures that goals are Specific, Measurable, Achievable, Relevant, and Time-bound. This structure translates high-level ambition (e.g., "hire better") into tactical accountability (e.g., "improve QoH by 15% in Q3").

Developing data-informed goal statements

Effective SMART goals integrate metrics (like QoH or CPH) with process improvements (like implementing skills assessments or referral programs) 

  • Quality-Focused Goal: Increase new hire performance ratings (a QoH predictor) by 15% within their first year by implementing structured interviews and advanced technical skills assessments by Q3.
  • Diversity-Focused Goal: Increase representation of women in technical roles from 22% to 30% by Q4 2025 through expanded university partnerships and revised job description language.
  • Efficiency-Focused Goal: Reduce time-to-fill for technical positions from 45 to 30 days by implementing a talent pipeline program and a dedicated hiring event strategy.
  • Financial Goal: Decrease cost-per-hire for sales positions by 18% (from $4,500 to $3,690) within six months by optimizing job board spending and implementing an enhanced employee referral program.

Strategic success is achieved when these goals are consistently tracked and visualized in a central dashboard.

Implement Tools and Train the Team

A strategic investment in technology is mandatory. Expert analysis indicates that organizations must invest in a dedicated TA platform. Relying solely on the bundled Applicant Tracking System included in a core HCM system is often insufficient, as these general HR tools rarely provide the specialized reporting, deep integrations, or dynamic, talent-centric analytics required for a successful DDR strategy. Dedicated platforms, such as technical screening analytics tools, provide the objective data (e.g., Codeplayer scores) that generic systems cannot generate.

Simultaneously, the TA team must undergo intensive training to foster data literacy, which is defined as the knowledge and skills required to read, analyze, interpret, visualize, and communicate data effectively. Without the competency to interpret dashboards and apply quantitative insights, recruiters will default back to subjective judgment.

Finally, organizations must integrate the dedicated TA platform with the core HCM provider to ensure data governance and break down organizational silos.

Real-World Case Studies: Quantifiable Success in Data-Driven TA

The strategic value of DDR is best demonstrated through quantifiable improvements across the core metrics of speed, cost, and quality.

Case A: Accelerating Time-to-Hire through predictive screening

A major technology firm faced a critical organizational constraint: a time-to-fill (TTF) averaging 90 days for core software engineering roles, largely due to lengthy, subjective interview loops and inefficient early-stage screening.

The firm implemented predictive analytics to rapidly score technical candidates based on standardized, objective early assessment data, similar to the high-speed evaluation utilized by firms like ChinaMobile. They optimized their technical screening process using objective platform analytics, identifying top-performing candidates within the first 48 hours of assessment completion.

Result: By replacing manual screening with data-driven prioritization, the firm reduced its time-to-fill for engineering roles by 45 days, achieving an efficiency gain of approximately 50%. This acceleration enabled the organization to onboard mission-critical teams faster, maximizing their market advantage.

Case B: The retention turnaround via data modeling

A financial services company experienced damaging early-stage turnover (exceeding 20% annually) in their high-volume service roles, incurring massive recurrent training and replacement costs.

The company performed a deep analysis of historical workforce data to identify key characteristics of its most retained and highest-performing employees. This data was used to construct a customized QoH predictive model, which heavily weighted factors such as objective assessment scores and indicators of cultural fit during the selection process, mirroring the strategy that yielded positive results for Wells Fargo and a leading UK retailer.

Result: Within a single year, the focused, data-driven hiring strategy achieved a 15% improvement in retention for their high-volume positions. This retention improvement translated directly into reduced recruitment backfill costs and hundreds of thousands of dollars in savings on training expenses, consistent with the trend that predictive analytics significantly enhances long-term retention.

Do’s and Don’ts: Navigating Common Pitfalls and Ensuring Strategic Success

DO’s: Best Practices for Strategic Deployment

  • DO: Invest in a Dedicated TA Platform: Talent acquisition is a dynamic, specialized function that requires best-of-breed technology for powerful reporting and deep data analytics. Specialized systems, such as advanced technical screening platforms, provide unique, objective insights (like Codeplayer analysis) that generic HCM suites are incapable of generating.
  • DO: Share Data Cross-Functionally: Ensure seamless integration between your specialized TA platform and your core HCM system. Integrating the entire HR technology stack breaks down data silos, preventing misinformation and guaranteeing that pre-hire assessment data is correctly linked to post-hire performance and retention data for accurate QoH validation.
  • DO: Standardize Assessment: Implement structured, validated assessments—including structured interviews and work sample tests—that produce reliable, quantitative data. These methodologies are statistically proven to be the most accurate predictors of job performance, removing subjective bias from the selection stage.

DON’Ts: Common Pitfalls and Mistakes

  • DON’T: Rely Only on HCM Bundled Tools: This common mistake prevents the TA function from achieving the necessary focus and analytical depth required for strategic decision-making. Recruitment success requires technology dedicated to the entire talent acquisition lifecycle.
  • DON’T: Ignore Context in Benchmarking: While comparing performance against external industry benchmarks is useful, blindly chasing average metrics for Time-to-Hire or CPH without critically assessing the unique context of the organization (e.g., highly specialized roles, market scarcity, or company size) leads to flawed strategies. The primary goal is internal optimization based on customized QoH targets, not achieving external vanity metrics. A higher CPH may be entirely justified if it secures exceptionally rare and high-impact talent.
  • DON’T: Track Too Many Irrelevant Metrics: Over-complicating the system by tracking dozens of marginally relevant metrics dilutes focus and obscures truly actionable insights. Focus limited resources on 3–5 core, high-impact KPIs (QoH, CPH, TTF) that are clearly tied to strategic business objectives.
  • DON’T: Operate with Siloed Data: Separate recruitment data analysis from core HR data storage. This segregation leads to errors, wasted resources, and profound misalignment between recruiting and post-hire operations.

Frequently Asked Questions (FAQs)

What is data-driven recruiting?

Data-driven recruiting is the systematic process of collecting, analyzing, and applying quantitative insights from various talent acquisition sources (ATS, assessments, HRIS) to replace subjective intuition with objective evidence, thereby improving decision accuracy and predictable outcomes like quality of hire and retention.

What is an example of a data-driven approach?

A practical example involves using predictive analytics to combine objective pre-hire assessment scores (e.g., technical skill scores verified by a Codeplayer analysis) with historical post-hire performance data. This analysis yields a regression model that can automatically and objectively predict which new candidates possess the strongest likelihood of achieving high performance and retention.

What are the four pillars of recruiting?

The term "four pillars of recruiting" refers to two distinct strategic frameworks. It may refer to the four components of recruitment marketing: employer brand building, content strategy, social media recruiting, and lead nurturing. Alternatively, it often refers to the core framework for talent acquisition strategy known as the "4 B's": Build, Buy, Borrow, and Bridge, which dictates how talent shortages are strategically addressed.

How to create a data-driven recruiting strategy?

A successful strategy follows a systematic five-phase playbook: 1) Audit the current subjective process to map the candidate journey; 2) Define and select core, measurable KPIs (QoH, CPH, TTF); 3) Set SMART, context-specific goals; 4) Invest in specialized technology and conduct thorough data literacy training; and 5) Implement a continuous review cycle for constant iteration and improvement based on measurable results.

Candidate Experience best practices to elevate your Recruitment Process in 2025

Defining candidate experience for the modern talent landscape

Candidate Experience (CX) is a collection of perceptions and emotions a job seeker develops regarding an organization throughout its hiring lifecycle. This journey begins long before the application, starting with the initial job search and exposure to employer brand, and extending through the screening methods, interview stages, final decision-making, and concluding with the onboarding process, regardless of whether the candidate is hired.

A robust CX is not merely a courtesy; it acts as a critical determinant of an organization’s ability to attract, select, and retain high-quality talent in a competitive environment.1

While the term Candidate Experience shares its acronym with Customer Experience (CX), their relationship within a business context is nuanced. Both focus on delivering positive interactions, yet Candidate Experience operates within a two-way evaluative process where the stakes are inherently higher. Candidates are rigorously vetting the company culture and operational professionalism just as intensely as the company is assessing their fit. 

The recruitment process itself is a deeply personal and high-stakes brand touchpoint for the applicant. A critical strategic realization for talent leaders is that a poor candidate experience can translate directly into lost customer loyalty and potential revenue. The manner in which a company manages its hiring pipeline becomes a public barometer of how it values its people, setting the foundation for the subsequent employee experience, which in turn, drives the eventual customer experience.

This competitive pressure is coupled with a pronounced shift in candidate expectations regarding speed and communication. Candidate patience is diminishing rapidly, giving rise to what is termed the "ghosting epidemic." 

This low tolerance for ambiguity necessitates that recruiters prioritize transparency and consistency across all stages of the pipeline.

Simultaneously, the industry is accelerating its pivot toward skills-based hiring. Traditional credentials are declining in perceived value; only 41% of job seekers today believe a college degree is "very important" in the job market. This fundamental change increases the demand for objective, relevant, and transparent assessments that validate a candidate’s practical abilities over academic qualifications, making the fairness and relevance of the evaluation stage a critical component of the overall candidate experience.

Why do you need to invest in candidate experience?

Investing in candidate experience yields measurable returns that extend far beyond simply filling a vacancy. The positive or negative nature of the hiring journey directly influences brand perception, future talent attraction, and financial performance.

Reputation management and business impact

A negative candidate experience has immediate and long-lasting reputational consequences. When candidates feel poorly treated, they act as active detractors within their professional networks and on public review sites. This digital word-of-mouth can inflict severe damage on an organization's employer brand, deterring future high-quality applicants. 

Talent attraction and pipeline health

The quality of the candidate experience determines an organization's long-term talent pipeline health. Providing constructive feedback and maintaining respectful communication makes talent four times more likely to consider applying to the company for future roles. This passive replenishment of the talent pipeline is highly cost-effective, leveraging past recruitment efforts. In contrast, 80% of job seekers report that they would not reapply to a company that failed to notify them of their application status.

Offer acceptance and quality of hire

Candidate experience heavily influences the final decision-making phase. Between 80% and 90% of candidates state that a positive or negative experience can change their minds about accepting a role or working for a company. 

The interview stage is particularly vulnerable: negative interactions during interviews cause 36% of candidates to decline offers, highlighting that talent acquisition teams must focus relentlessly on interview fairness and professionalism. 

Quantifying the strategic returns of positive candidate experience

Candidate experience best practices you should implement

1. Clear, transparent, and skills-focused job descriptions

The job description is the foundational document of the candidate journey, serving as the first formal point of communication. Organizations must make job descriptions highly specific, behavioral, and skills-focused. 

  • For roles in technical fields, this specificity is paramount. Instead of using generic phrases such as "develop software," the description should define specific technical expectations, such as "design and implement RESTful APIs in Python".
  • Furthermore, defining how success is measured (e.g., "deliver error-free releases at least 90% of the time") helps candidates accurately assess their ability to meet the role's demands.
  • By highlighting transferable skills and emphasizing demonstrable competence—such as problem-solving or coding proficiency—over strict adherence to degrees or certifications, recruiters align with the modern focus on skills-based hiring.

This approach also recognizes that only 41% of job seekers consider a college degree "very important" in today's market.

Similarly, transparency must extend to compensation. 

  • Nearly half (47%) of job seekers prioritize knowing salary details before they apply. Explicitly listing the salary range upfront demonstrates respect for the candidate’s time and serves as an effective initial filter, ensuring that applications received are from candidates whose expectations are already aligned with the opportunity.

2. Simplified, mobile-optimized application process

Application friction is a primary driver of candidate drop-off. Lengthy or impersonal application processes are frustrating and a significant barrier for high-quality candidates.

Organizations must recognize that the application conversion rate benchmark is low; for e-commerce, average conversion rates are often under 2%, suggesting that recruitment processes, which demand more personal effort, must be exceptionally streamlined to succeed. The mandate for a simplified process begins with a mobile-first approach. 

  • Over 61% of job seekers utilize mobile devices to apply for jobs. The application flow must adhere to modern mobile UX principles, prioritizing simplicity, clarity, and accessibility. This involves avoiding overly complex, clunky portals and ensuring forms are responsive and easy to navigate on small screens.
  • Recruiters should implement technology that minimizes manual data entry. Features such as automatic resume parsing, LinkedIn integration for auto-filling fields, and the critical "save progress" functionality prevent highly qualified applicants from abandoning an application halfway through.

3. Establishing hyper-personalized, timely Communication

The lack of timely and clear communication is consistently cited as the number one complaint from candidates, often leading to resentment and public criticism. With candidates assuming they have been ghosted after just one week of silence, rapid responsiveness is non-negotiable.

  • Automated tools are essential for achieving the required speed and consistency. Recruiters should utilize automated emails, texts, and chatbots to provide instant confirmation of application receipt, next steps, and status updates.
  • The use of conversational AI and LLM-powered virtual assistants can handle high-volume FAQs and initial pre-screening, a practice that has been shown to result in up to a 3x improvement in application completion rates and a 25% rise in candidate satisfaction scores. These automated touchpoints ensure that candidates never feel neglected.

However, automation must serve as a foundation for, not a replacement of, personalized engagement. To foster true connection, outreach must be hyper-personalized. This means moving beyond simply inserting a candidate's name. A practical strategy for enhancing this personalization is to ask candidates early in the process how they prefer to be contacted—via email, text, or phone—allowing the recruiter to tailor the interaction channel itself.

4. Use objective technology for seamless interviews and screening (The skills-first approach)

A foundational principle of excellent candidate experience in 2025 is the reliance on objective, skills-based evaluation methods that candidates perceive as transparent and fair.

Technical skills assessments, such as structured coding challenges or domain-specific simulations, are highly effective. By objectively evaluating candidates based on their actual skills, organizations can select individuals who are truly capable of doing the job, resulting in a reduction in bad hires and improved talent accuracy.

Furthermore, the format of the assessment profoundly affects the experience. Studies indicate that 62% of candidates experience significant anxiety during live technical interviews. In contrast, using take-home coding tests or simulated work environment challenges reduces this performance-limiting stress. This format allows candidates to demonstrate real-world problem-solving skills, conduct necessary research, and explore complex problems in an environment that more closely mirrors actual working conditions. 

5. Provide real-time, constructive feedback 

Providing timely, specific feedback is the most correlated factor with positive Candidate Net Promoter Scores (NPS), particularly among rejected candidates. Talent is four times more likely to consider applying again to a company that offers constructive feedback, demonstrating the long-term value of this practice.

To ensure feedback is effective, recruiters should adhere to a rigorous protocol:

  1. Timeliness: Feedback must be delivered as soon as possible after the interview or assessment, ideally within 24–48 hours, while the information is fresh in the candidate’s mind.
  2. Structure and objectivity: Feedback should be balanced, including both positive reinforcement of strengths and constructive identification of areas for improvement. It must remain professional, tied directly to the skills and requirements of the role, and avoid personal opinions.
  3. Actionability: The constructive elements must be actionable, offering clear, practical suggestions for improvement that the candidate can apply in future opportunities, transforming the rejection into a valuable learning interaction.

Delivering a generic, auto-generated rejection email is viewed as disrespectful and can immediately damage trust.

6. Create an inclusive, bias-free recruitment process

Ensuring fairness and inclusivity is a fundamental best practice, not only for ethical reasons but also for mitigating legal and reputational risk. This practice must now extend to the governance of automated tools used in screening. AI systems, particularly those powered by Large Language Models (LLMs), learn from historical data that often reflects and reinforces societal biases, creating risks of discrimination in hiring decisions.

Recruiters must adopt several strategies to mitigate both human and algorithmic bias:

  • Structured interviews: 72% of employers are now using structured interviews to standardize the evaluation process. By using a standard set of questions and clear scoring rubrics, organizations ensure that all candidates are assessed against the same objective criteria, significantly reducing the impact of unconscious bias.
  • Technological anonymization: Dedicated video interviewing and assessment software should be used to monitor for and reduce bias. Advanced platforms can anonymize applications and even transcribe speech to text during screening, allowing hiring managers to focus purely on skills, experience, and talent. Recruiters must prioritize accessible, intuitive platforms and ensure candidates are reassured that technical difficulties will not count against them.
  • Inclusive design: Job roles should be designed to be flexible by default, a practice that demonstrably increases applications from diverse groups, such as women. Job descriptions must avoid coded language and irrelevant requirements, ensuring that the roles are accessible to marginalized groups.

Critically, true inclusivity in 2025 demands rigorous AI governance. The "black box" nature of many AI algorithms, which obscures how decisions are reached, presents an ethical challenge. 

Key Metrics to Track:

  1. Candidate Satisfaction Scores (CSAT/NPS): This is the most direct gauge of sentiment and willingness to refer. Industry benchmarks show that the staffing industry Candidate NPS rose significantly to 30 in 2024. 
  2. Drop-Off Rates (by stage): Tracking where candidates abandon the process pinpoints friction. High drop-off rates often signal a too-lengthy application or assessment process, or a lapse in communication.
  3. Time-to-Hire (TTH) and Time-to-Contact: These operational metrics reflect efficiency and responsiveness. The average TTH is approximately 42 days, and given candidates' impatience (assuming ghosting after one week), reducing this cycle time is critical to maintaining positive sentiment.
  4. Offer Acceptance Rate: This metric serves as a final quality check on the entire candidate journey, indicating whether the experience was compelling enough to secure the top talent.

Conclusions and future outlook

The strategic management of Candidate Experience (CX) has become a primary driver of talent acquisition success in the competitive 2025 landscape. The central mandate for recruiters is the shift from transactional processes to relationship-based nurturing, grounded in fairness, transparency, and speed.

Moving forward, sustained CX excellence hinges on three strategic priorities:

  1. Prioritizing objectivity and fairness: The demand for fairness necessitates the widespread adoption of structured hiring methods and skills-based assessment technologies. By moving away from subjective evaluation towards objective measures of competence, organizations not only enhance the candidate experience but also mitigate the high risks associated with unconscious human bias and algorithmic bias in AI systems.
  2. Mastering communication velocity: Given the candidate's low threshold for perceived ghosting (one week of silence), rapid communication is mandatory. This requires leveraging LLM-powered automation for instant updates while using personalized data to maintain a high-touch, human connection.
  3. Establishing robust AI governance: HR leaders must ensure ethical oversight as agentic AI integrates deeper into recruitment. This means demanding transparency (XAI) and institutionalizing regular bias audits to ensure technology serves as an ally in reducing bias, rather than a system that reinforces historical inequalities.

Organizations focused on attracting elite technical talent must rely on objective assessment to fulfill the modern candidate's demand for a fair, skills-based evaluation.

FAQs: Candidate Experience Best Practices

How to make candidate experience better?

To improve the candidate experience, organizations must strategically focus on three fundamental areas: enhance speed by reducing Time-to-Hire and Time-to-Contact metrics; mandate transparency by publishing clear, skills-focused job descriptions and communicating next steps consistently; and ensure objectivity by implementing structured interviews and objective skills assessments.

What is the best candidate experience?

The best candidate experience is characterized by genuine respect for the candidate's time and effort, personalized communication that acknowledges their unique background, and a clear, objective evaluation process. This experience makes the candidate feel valued and ensures they are assessed based purely on the demonstrable skills relevant to the job, regardless of whether they are hired.

How to measure candidate experience?

Candidate experience is effectively measured by tracking a combination of operational efficiency metrics, such as Time-to-Hire, Drop-off Rates at each stage, and Offer Acceptance Rates, alongside subjective sentiment scores. The most critical sentiment metric is the Candidate Net Promoter Score (NPS) and Candidate Satisfaction (CSAT), which should be collected via short, stage-specific surveys sent immediately after key interactions to capture timely and accurate feedback.

Top Products

Explore HackerEarth’s top products for Hiring & Innovation

Discover powerful tools designed to streamline hiring, assess talent efficiently, and run seamless hackathons. Explore HackerEarth’s top products that help businesses innovate and grow.
Frame
Hackathons
Engage global developers through innovation
Arrow
Frame 2
Assessments
AI-driven advanced coding assessments
Arrow
Frame 3
FaceCode
Real-time code editor for effective coding interviews
Arrow
Frame 4
L & D
Tailored learning paths for continuous assessments
Arrow
Get A Free Demo